47 research outputs found

    A Caenorhabditis elegans assay of seizure-like activity optimised for identifying antiepileptic drugs and their mechanisms of action

    Get PDF
    BACKGROUND: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models. This process could potentially be expedited by using simpler invertebrate systems, such as the nematode Caenorhabditis elegans. NEW METHOD: Head-bobbing convulsions were previously reported to be inducible by pentylenetetrazol (PTZ) in C. elegans with loss-of-function mutations in unc-49, which encodes a GABAA receptor. Given that epilepsy-linked mutations in human GABAA receptors are well documented, this could represent a clinically-relevant system for early-stage AED screens. However, the original agar plate-based assay is unsuited to large-scale screening and has not been validated for identifying AEDs. Therefore, we established an alternative streamlined, higher-throughput approach whereby mutants were treated with PTZ and AEDs via liquid-based incubation. RESULTS: Convulsions induced within minutes of PTZ exposure in unc-49 mutants were strongly inhibited by the established AED ethosuximide. This protective activity was independent of ethosuximide's suggested target, the T-type calcium channel, as a null mutation in the worm cca-1 ortholog did not affect ethosuximide's anticonvulsant action. COMPARISON WITH EXISTING METHOD: Our streamlined assay is AED-validated, feasible for higher throughput compound screens, and can facilitate insights into AED mechanisms of action. CONCLUSIONS: Based on an epilepsy-associated genetic background, this C. elegans unc-49 model of seizure-like activity presents an ethical, higher throughput alternative to conventional rodent seizure models for initial AED screens

    The neuronal calcium sensor family of Ca2+-binding proteins

    No full text

    Regulation of exocytosis by protein kinase C

    No full text
    PKC (protein kinase C) has been known for many years to modulate regulated exocytosis in a wide variety of cell types. in neurons and neuroendocrine cells, PKC regulates several different stages of the exocytotic process, suggesting that these multiple actions of PKC are mediated by phosphorylation of distinct protein targets. In recent years, a variety of exocytotic proteins have been identified as PKC substrates, the best characterized of which are SNAP-25 (25 kDa synaptosome-associated protein) and Munc18. In the present study, we review recent evidence suggesting that site-specific phosphorylation of SNAP-2S and Munc18 by PKC regulates distinct stages of exocytosis.</p
    corecore