28 research outputs found

    Characterization of the in vivo plaque growth kinetics and synaptic pathology with evaluation of an immunotherapeutic approach in an Alzheimer disease mouse model

    Get PDF
    Morbus Alzheimer ist die häufigste Form einer Demenzerkrankung und stellt aufgrund der steigenden Lebenserwartung eine sehr große ökonomische und emotionale Belastung für Patienten, deren Familien und die gesamte Gesellschaft dar. Eine Verringerung dieser Belastung erfordert dringend krankheitsmodifizierende Therapien, die bisher nicht zur Verfügung stehen. Als wahrscheinlichste Erklärung für die molekularen Ursachen der Krankheit wurde in der Amyloid-Kaskaden-Hypothese postuliert, dass die Akkumulation und Aggregation des Abeta-Peptids das zentrale Ereignis darstellt. Infolgedessen kommt es zu synaptischen Beeinträchtigungen durch Abeta-Oligomere, Entzündungsreaktionen durch unlösliche Abeta-Aggregate in Form von amyloiden Plaques, progressiven Schädigungen von Synapsen und Neuronen, oxidativem Stress, der Hyperphosphorylierung des Mikrotubuli-assoziierten Proteins Tau und einem Neuronenverlust. Das Abeta-Peptid wird durch sequentielle Spaltung des Amyloid-Vorläuferproteins (APP) durch die beta- und gamma-Sekretase konstitutiv im Gehirn produziert. In der vorliegenden Arbeit wurden die Auswirkungen der Überexpression eines humanen APP mit der schwedischen Mutation auf Synapsen und die Akkumulationskinetik des Abeta-Peptids zu amyloiden Plaques in einem Alzheimer-Mausmodell (Tg2576) untersucht. Die detaillierte Charakterisierung des Mausmodells wurde in einer Therapiestudie umgesetzt, in der eine passive Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere getestet wurde. Im ersten Teil der Arbeit wurde der Einfluss der Überexpression des APP auf dendritische Spines untersucht, die das postsynaptische Kompartiment glutamaterger Synapsen entlang von Dendriten bilden. Als Reporter-Tiere wurden Mäuse verwendet, die das gelbfluoreszierende Protein YFP in einem Teil der pyramidalen Neuronen des Cortex exprimieren. Mithilfe der in vivo Zwei-Photonen-Mikroskopie wurden die denritischen Spines an den apikalen Dendriten der Schicht II/III und V Neurone im somatosensorischen Cortex analysiert. Die Überexpression des APP führte zu einem differentiellen Effekt, wobei in Schicht II/III Neuronen keine Änderung und in Schicht V Neuronen eine Erhöhung der Dichte dendritischer Spines gemessen wurde. Eine detaillierte Charakterisierung zeigte eine Mehrzahl an stabilen Spines als ursächlich für die erhöhte Spinedichte, während keine zeitliche Änderung der Spinedichte über sechs Wochen detektiert wurde. Auch die Morphologie der dendritischen Spines war unverändert. Diese Ergebnisse deuten auf eine mögliche physiologische Rolle von APP und/oder dessen proteolytische Fragmente an Synapsen. Ein wichtiges neuropathologisches Merkmal von Morbus Alzheimer sind amyloide Plaques, die durch Aggregation des Abeta-Peptids zu Amyloidfibrillen mit einer gekreuzten beta-Faltblattstruktur entstehen. Demzufolge wurde im zweiten Teil der vorliegenden Arbeit mithilfe der in vivo Zwei-Photonen-Mikroskopie, unter der wiederholten Anwendung des spezifischen fluoreszenten Markers Methoxy-X04, die Entstehungs- und Aggregationskinetik amyloider Plaques untersucht. Eine quantitative Auswertung von Plaquegrößen, -wachstumsraten und -dichten in zwei Altersgruppen der frühen und späten amyloiden Pathologie führte zur bisher detailliertesten in vivo Charakterisierung in einem Alzheimer-Mausmodell. Für eine präzise Messung der Plaquedichten wurde ein sehr großes Gehirnvolumen von 3 Kubikmillimeter pro Gruppe untersucht. In einem Langzeitversuch über 15,5 Monate mit einer zeitlichen Auflösung von einer Woche wurde erstmals eine komplette Kinetik des Plaquewachstums in einem Mausmodell beschrieben, die den gleichen Verlauf einer Sigmoid-Funktion aufwies, wie er bereits in vitro und in Alzheimer-Patienten gezeigt wurde. Die Plaquedichte stieg asymptotisch mit dem Alter an und folgte einer exponentiellen, einphasigen Assoziationsfunktion. Neu entstandene Plaques wiesen mit Abstand die kleinste Plaquegröße auf, die mit zunehmendem Alter anstieg. Die lineare Plaquewachstumsrate, gemessen als Zuwachs des Plaqueradius pro Woche, sank mit ansteigendem Alter der Mäuse, was sich in einer negativen Korrelation der Plaquewachstumsrate mit der Plaquedichte widerspiegelte. Sehr große Plaques wurden früh in der Entstehungsphase gebildet und die Größe am Ende der Untersuchung korrelierte mit ihrer Wachstumsrate. In der frühen Phase der Plaqueentwicklung nahmen die Plaques mit einer maximalen Wachstumsrate zu, die nicht durch die Abeta-Konzentration limitiert war. Die Wachstumsraten individueller Plaques waren sehr breit verteilt, was auf einen Einfluss lokaler Faktoren schließen ließ. Dieser Befund wurde gestützt durch den Langzeitversuch, da kein Zusammenhang zwischen den Wachstumsraten benachbarter Plaques detektiert wurde. Die Ergebnisse dieser Studie zeigen ein physiologisches Wachstumsmodell, in dem Plaques sehr langsam über große Zeiträume wachsen bis zum Erreichen eines Äquilibriums. Durch die nachgewiesenen Parallelen zu den Befunden von in vitro Studien und in vivo Ergebnissen von Alzheimer-Patienten stellen die beschriebenen Zusammenhänge eine wertvolle Grundlage für die Translation von Ergebnissen zwischen präklinischer und klinischer Forschung zur Entwicklung von Abeta-senkenden Therapien dar. Im dritten Teil der Arbeit wurden die Effekte einer passiven Immunisierung gegen das Abeta-Peptid oder Abeta-Oligomere untersucht. Nach einer zweimonatigen Antikörper-Behandlung wurden keine Unterschiede in der Plaqueentstehungs- und Plaquewachstumskinetik gemessen. Eine in der Literatur beschriebene Akkumulation von Abeta-Oligomeren konnte durch eine in vivo Visualisierung mit einem hochspezifischen Antikörper gegen diese Molekülspezies nicht bestätigt werden. Lösliche Abeta-Peptide oder Abeta-Aggregate akkumulierten erwartungsgemäß um den amyloiden Kern von Plaques. Am Ende der Immunisierungsstudie wurde die synaptische Pathologie mittels immunhistochemischer Färbung der Prä- und Postsynapsen mit den Markern Synapsin und PSD-95 untersucht. Innerhalb amyloider Plaques wurden sehr niedrige Synapsendichten gemessen, die mit zunehmender Entfernung zum Plaque asymptotisch zu einem Plateau anstiegen. Diese Analyse zeigte erstmals, dass der Einflussbereich der toxischen Wirkung amyloider Plaques für Präsynapsen wesentlich größer ist als für Postsynapsen, was auf eine höhere Sensibilität von Präsynapsen schließen lässt. Abseits von Plaques im Cortex waren die Synapsendichten niedriger im Vergleich zu Wildtyptieren, wie durch den Vergleich der Plateaus gemessen wurde. Beide therapeutischen Antikörper zeigten eine partielle Normalisierung der Synapsendichte. Daraus folgt, dass die Abeta-Oligomere ursächlich für die Synapsenpathologie waren, da eine spezifische Neutralisierung dieser Abeta-Aggregate für einen Therapieeffekt ausreichte. Diese Ergebnisse bestätigen in vivo die toxische Wirkung von Abeta-Oligomeren auf Synapsen und beweisen eine mögliche Neutralisierung dieser löslichen Abeta-Aggregate durch eine passive Immunisierung.Alzheimer’s disease (AD) is the most common form of dementia implying big economical and emotional burden for patients, their families and the whole economy due to a generally rising life expectancy. A reduction of costs and stress urgently requires disease-modifying therapies which are currently still lacking. Maybe the most accurate explanation for the molecular cause of the disease is reflected in the amyloid-cascade hypothesis, postulating the accumulation and aggregation of the Abeta peptide as central pathogenic event. Hence, synaptic pathology caused by Abeta oligomers, inflammatory reactions due to insoluble Abeta aggregates, namely amyloid plaques, progressive damage of synapses and neurons, oxidative stress, hyperphosphorylisation of the microtubule-associated protein tau, and finally neuron loss commonly occur as a result. Moreover, the Abeta peptide is constitutively produced in the brain by sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretase enzymes. In the present work, I studied the effects of human APP overexpression (with a Swedish mutation) on both synapses and the accumulation kinetics of amyloid plaque formation in a mouse model of Alzheimer’s disease (Tg2576). This detailed characterization of the mouse model was then further utilized in a therapeutic study testing the passive immunization against the Abeta-peptide or Abeta oligomers. In the first part of this work, I investigated the effects of APP overexpression on dendritic spines forming the postsynaptic compartment of glutamatergic synapses on dendrites. As reporter animals, mice expressing the yellow-fluorescent protein YFP in a subset of cortical pyramidal neurons were used. Two-photon microscopy enabled the elaborate in vivo analysis of dendritic spines on apical dendrites of layer II/III and V neurons in the somatosensory cortex. Overexpression of APP induced a locally differential effect on the spine density with no changes being observed in layer II/III yet increased spine numbers calculated in layer V neurons. A more detailed characterization revealed a majority of stable spines as responsible for the rise in spine densities; however, no further changes in the spine count were detected over a period of six weeks. Moreover, dendritic spine morphology was also unaltered. Summarized, these results hint to a possible physiological role of APP and/or its proteolytic fragments at the synapse. Amyloid plaques, one of the two characteristic neuropathological hallmarks of AD, are generated by aggregation of the Abeta peptide into amyloid fibrils with a crossed beta-sheet structure. Thus, in the second part of this work, the formation and aggregation kinetics of amyloid plaques were measured by means of in vivo two-photon microscopy and repeated use of the fluorescent marker methoxy-X04. Such extensive quantitative analysis of plaque sizes, plaque growth rates and plaque densities as performed for two different age groups, depicting models for early and late stage AD pathology, allowed the most detailed in vivo characterization so far. For a precise measurement of plaque densities, in each group I analysed large brain volumes of 3 cubic millimeters. Interestingly, the complete range of plaque growth kinetics as imaged in a weekly interval for over 15,5 month showed the same trend like that of a sigmoid function, a finding that accords with in vitro studies and AD patients. Moreover, the plaque densities increased asymptotically with higher age and followed an exponential, one-phase association function. Newly-formed plaques showed by far the smallest plaque size, which also continued to rise upon ageing. In contrast, the linear plaque growth rate, measured as weekly increase in the plaque radius, decreased with increasing age of the animal. This finding was also reflected in a negative correlation between plaque growth rate and plaque density. In addition, huge plaques were produced early in the developmental phase, and the final size they reached at the end of the experiment correlated with the plaque growth rate. In the early phase of plaque formation, the plaques expanded with a maximal growth rate that was not limited by the Abeta concentration. Furthermore, the growth rates of individual plaques were widely distributed assuming the influence of local factors. This finding was supported by the long-term study over 15,5 months showing no correlation between the growth rates of neighbouring plaques. Conclusively, the results of this investigation demonstrate a growth model, in which plaques grow very slowly over longer periods until they reach equilibrium. Thus, both the described relationships and verified parallels to in vitro studies and findings in AD patients shape an important basis for the translation of results between preclinical and clinical research and for the final development of Abeta-lowering therapies. In the third part of this thesis, I analysed the effects of a passive immunization against Abeta peptides or Abeta oligomers. A two-month long antibody treatment did neither affect the plaque formation nor its growth kinetics. Moreover, Abeta oligomer assemblies as described previously in literature were not detected using in vivo visualization with a highly specific antibody against these molecular species. Instead, soluble Abeta peptides or Abeta aggregates accumulated around the plaque core as expected. At the end of the immunization study, the synaptic pathology was analysed by immunohistochemical stainings of pre- and postsynapses using the markers synapsin and PSD-95. Here, very low synapse densities were measured inside amyloid plaques, which increased asymptotically until culmination of a plateau. This analysis showed for the first time that the influenced area of toxic effects of amyloid plaques is higher for presynapses than for postsynapses, suggesting a higher sensitivity of presynapses. Apart from plaques, the synapse densities were lower in AD mice compared to wild-type animals as identified by comparison of the estimated plateaus. Both therapeutic antibodies showed a partial normalization of the synapse density. Thus, Abeta oligomers were likely causative for the synapse pathology since the specific neutralization of Abeta aggregates sufficiently achieved a therapeutic effect. In summary, these findings verify the toxic effect of Abeta oligomers on synapses in vivo and support a possible neutralization of soluble Abeta aggregates by passive immunization

    In vivo imaging reveals sigmoidal growth kinetic of β-amyloid plaques

    Get PDF
    A major neuropathological hallmark of Alzheimer's disease is the deposition of amyloid plaques in the brains of affected individuals. Amyloid plaques mainly consist of fibrillar β-amyloid, which is a cleavage product of the amyloid precursor protein. The amyloid-cascade-hypothesis postulates Aβ accumulation as the central event in initiating a toxic cascade leading to Alzheimer's disease pathology and, ultimately, loss of cognitive function. We studied the kinetics of β-amyloid deposition in Tg2576 mice, which overexpress human amyloid precursor protein with the Swedish mutation. Utilizing long-term two-photon imaging we were able to observe the entire kinetics of plaque growth in vivo. Essentially, we observed that plaque growth follows a sigmoid-shaped curve comprising a cubic growth phase, followed by saturation. In contrast, plaque density kinetics exhibited an asymptotic progression. Taking into account the fact that a critical concentration of Aβ is required to seed new plaques, we can propose the following kinetic model of β-amyloid deposition in vivo. In the early cubic phase, plaque growth is not limited by Aβ concentration and plaque density increases very fast. During the transition phase, plaque density stabilizes whereas plaque volume increases strongly reflecting a robust growth of the plaques. In the late asymptotic phase, Aβ peptide production becomes rate-limiting for plaque growth. In conclusion, the present study offers a direct link between in vitro and in vivo studies facilitating the translation of Aβ-lowering strategies from laboratory models to patients

    Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice.

    Get PDF
    Tauopathies are widespread neurodegenerative disorders characterised by the intracellular accumulation of hyperphosphorylated tau. Especially in Alzheimer's disease, pathological alterations in the retina are discussed as potential biomarkers to improve early diagnosis of the disease. Using mice expressing human mutant P301S tau, we demonstrate for the first time a straightforward optical approach for the in vivo detection of fibrillar tau in the retina. Longitudinal examinations of individual animals revealed the fate of single cells containing fibrillar tau and the progression of tau pathology over several months. This technique is most suitable to monitor therapeutic interventions aimed at reducing the accumulation of fibrillar tau. In order to evaluate if this approach can be translated to human diagnosis, we tried to detect fibrillar protein aggregates in the post-mortem retinas of patients that had suffered from Alzheimer's disease or Progressive Supranuclear Palsy. Even though we could detect hyperphosphorylated tau, we did not observe any fibrillar tau or Aß aggregates. In contradiction to previous studies, our observations do not support the notion that Aβ or tau in the retina are of diagnostic value in Alzheimer's disease

    Label-free 3D-CLEM Using Endogenous Tissue Landmarks

    Get PDF
    Emerging 3D correlative light and electron microscopy approaches enable studying neuronal structure-function relations at unprecedented depth and precision. However, established protocols for the correlation of light and electron micrographs rely on the introduction of artificial fiducial markers, such as polymer beads or near-infrared brandings, which might obscure or even damage the structure under investigation. Here, we report a general applicable "flat embedding" preparation, enabling high-precision overlay of light and scanning electron micrographs, using exclusively endogenous landmarks in the brain: blood vessels, nuclei, and myelinated axons. Furthermore, we demonstrate feasibility of the workflow by combining in vivo 2-photon microscopy and focused ion beam scanning electron microscopy to dissect the role of astrocytic coverage in the persistence of dendritic spines

    Cross-Sectional Comparison of Small Animal [F-18]-Florbetaben Amyloid-PET between Transgenic AD Mouse Models

    Get PDF
    We aimed to compare [F-18]-florbetaben PET imaging in four transgenic mouse strains modelling Alzheimer's disease (AD), with the main focus on APPswe/PS2 mice and C57Bl/6 mice serving as controls (WT). A consistent PET protocol (N = 82 PET scans) was used, with cortical standardized uptake value ratio (SUVR) relative to cerebellum as the endpoint. We correlated methoxy-X04 staining of beta-amyloid with PET results, and undertook ex vivo autoradiography for further validation of a partial volume effect correction (PVEC) of PET data. The SUVR in APPswe/PS2 increased from 0.95 +/- 0.04 at five months (N = 5) and 1.04 +/- 0.03 (p < 0.05) at eight months (N = 7) to 1.07 +/- 0.04 (p < 0.005) at ten months (N = 6), 1.28 +/- 0.06 (p < 0.001) at 16 months (N = 6) and 1.39 +/- 0.09 (p < 0.001) at 19 months (N = 6). SUVR was 0.95 +/- 0.03 in WT mice of all ages (N = 22). In APPswe/PS1G384A mice, the SUVR was 0.93/0.98 at five months (N = 2) and 1.11 at 16 months (N = 1). In APPswe/PS1dE9 mice, the SUVR declined from 0.96/0.96 at 12 months (N = 2) to 0.91/0.92 at 24 months (N = 2), due to beta-amyloid plaques in cerebellum. PVEC reduced the discrepancy between SUVR-PET and autoradiography from -22% to +2% and increased the differences between young and aged transgenic animals. SUVR and plaque load correlated highly between strains for uncorrected (R = 0.94, p < 0.001) and PVE-corrected (R = 0.95, p < 0.001) data. We find that APPswe/PS2 mice may be optimal for longitudinal amyloid-PET monitoring in planned interventions studies

    In vivo multiphoton imaging reveals gradual growth of newborn amyloid plaques over weeks

    Get PDF
    The kinetics of amyloid plaque formation and growth as one of the characteristic hallmarks of Alzheimer’s disease (AD) are fundamental issues in AD research. Especially the question how fast amyloid plaques grow to their final size after they are born remains controversial. By long-term two-photon in vivo imaging we monitored individual methoxy-X04-stained amyloid plaques over 6 weeks in 12 and 18 months old Tg2576 mice. We found that in 12 months old mice, newly appearing amyloid plaques were initially small in volume and subsequently grew over time. The growth rate of plaques was inversely proportional to their volume; thus amyloid plaques that were already present at the first imaging time point grew over time but slower compared to new plaques. Additionally, we analyzed 18 months old Tg2576 mice in which we neither found newly appearing plaques nor a significant growth of pre-existing plaques over 6 weeks of imaging. In conclusion, newly appearing amyloid plaques are initially small in size but grow over time until plaque growth can not be detected anymore in aged mice. These results suggest that drugs that target plaque formation should be most effective early in the disease, when plaques are growing

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau

    Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans

    No full text
    Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium

    Longitudinal assessment of cerebral Beta-amyloid deposition in mice overexpressing Swedish mutant beta-amyloid precursor protein using 18F-florbetaben PET

    No full text
    Free to read The progression of β-amyloid deposition in the brains of mice overexpressing Swedish mutant β-amyloid precursor protein (APP-Swe), a model of Alzheimer disease (AD), was investigated in a longitudinal PET study using the novel β-amyloid tracer 18F-florbetaben. Methods: Groups of APP-Swe and age-matched wild-type (WT) mice (age range, 10–20 mo) were investigated. Dynamic emission recordings were acquired with a small-animal PET scanner during 90 min after the administration of 18F-florbetaben (9 MBq, intravenously). After spatial normalization of individual PET recordings to common coordinates for mouse brain, binding potentials (BPND) and standardized uptake value ratios (SUVRs) were calculated relative to the cerebellum. Voxelwise analyses were performed using statistical parametric mapping (SPM). Histochemical analyses and ex vivo autoradiography were ultimately performed in a subset of animals as a gold standard assessment of β-amyloid plaque load. Results: SUVRs calculated from static recordings during the interval of 30–60 min after tracer injection correlated highly with estimates of BPND based on the entire dynamic emission recordings. 18F-florbetaben binding did not significantly differ in APP-Swe mice and WT animals at 10 and 13 mo of age. At 16 mo of age, the APP-Swe mice had a significant 7.9% increase (P 18F-florbetaben uptake above baseline and at 20 mo there was a 16.6% increase (P P R = 0.95, P Conclusion: In the first longitudinal PET study in an AD mouse model using the novel β-amyloid tracer 18F-florbetaben, the temporal and spatial progression of amyloidogenesis in the brain of APP-Swe mice were sensitively monitored. This method should afford the means for preclinical testing of novel therapeutic approaches to the treatment of AD

    Bevacizumab Has Differential and Dose-Dependent Effects on Glioma Blood Vessels and Tumor Cells

    No full text
    Purpose: Bevacizumab targets VEGF-A and has proved beneficial in glioma patients, improving clinical symptoms by the reduction of tumor edema. However, it remains controversial whether or not bevacizumab exerts antitumor effects in addition to (and potentially independent of) its effects on tumor vessels, and it is unknown what doses are needed to achieve this. Experimental Design: We established a novel orthotopic glioma mouse model that allowed us to simultaneously study the kinetics of the morphologic and functional vascular changes, tumor growth, and the viability of individual tumor cells during the course of anti-VEGF therapy in the same microscopic tumor region in real-time. Three doses of bevacizumab were compared, a subclinical dose and two clinical doses (medium and high). Results: Low (subclinical) doses of bevacizumab led to a significant reduction of the total vascular volume without affecting tumor cell viability or the overall tumor growth rates. Medium and high doses triggered a similar degree of vascular regression but significantly decreased tumor growth and prolonged survival. Remaining vessels revealed morphologic features of vascular normalization, reduced permeability, and an increase in blood flow velocity; the latter was dose dependent. We observed an uncoupling of the antitumoral and the antivascular effects of bevacizumab with the high dose only, which showed the potential to cause microregional glioma cell regression. In some tumor regions, pronounced glioma cell regression occurred even without vascular regression. In vitro, there was no effect of bevacizumab on glioma cell proliferation. Conclusions: Regression of glioma cells can occur independently from vascular regression, suggesting that high doses of bevacizumab have indirect anticancer cell properties in vivo. Clin Cancer Res; 17(19); 6192-205. (C) 2011 AACR
    corecore