1,137 research outputs found

    A computer program for the use of sensitivity analysis in display evaluation

    Get PDF
    A description is provided of the Display Evaluation computer program, some results of this program and comparison of these results with a simple experiment. A detailed description of the experiment and data analysis are also included

    Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    Get PDF
    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed

    Use of sensitivity analysis to predict pilot performance as a function of different displays

    Get PDF
    A technique for objectively evaluating different displays by sensitivity analysis is described. First, the mathematical model used to analyze static displays is developed. The technique is based on formulating functional relationships between the state variables and the variables observable in the display. The matrix of the partial derivatives of the display variables with respect to the state variables, together with the observer's acuity function, is used to calculate expected errors in the state vector estimation. The technique is expanded by the use of Kalman filtering to process a time series of observation vectors. This provides a tool for analyzing displays of dynamic processes by means of a dynamic display evaluation computer program. Results are reported using this program to simulate an Instrument Landing System approach

    Viscoelastic deformation of articular cartilage during impact loading

    Get PDF
    Peer reviewedPostprin

    Soil O2 controls denitrification rates and N2O yield in a riparian wetland

    Get PDF
    [1] Wetland soil oxygen (O2) is rarely measured, which limits our understanding of a key regulator of nitrogen loss through denitrification. We asked: (1) How does soil [O2] vary in riparian wetlands? (2) How does this [O2] variation affect denitrification rates and end products? and (3) How does [O2] variation and previous exposure to O2affect trace gas fluxes? We collected a continuous seven-month record of [O2] dynamics in a “wet” and “dry” riparian zone. In April 2009, soil [O2] ranged from 0 to 13% and consistently increased with increasing distance from the stream. [O2] gradually declined in all sensors until all sensors went anoxic in early September 2009. In mid-fall, a dropping water table increased soil [O2] to 15–20% within a 2–3 day period. We measured denitrification using the Nitrogen-Free Air Recirculation Method (N-FARM), a direct measurement of N2 production against a helium background. Denitrification rates were significantly higher in the wetter areas, which correlated to lower O2 conditions. Denitrification rates in the drier areas correlated with [O2] in the early spring and summer, but significantly decreased in late summer despite decreasing O2 concentrations. Increasing [O2] significantly increased core N2O production, and therefore may be an important control on nitrous oxide yield. Field N2O fluxes, however, were highly variable, ranging from 0 to 800 ug N m−2 hr−1 with no differences between the wet and dry sites. Future research should focus on understanding the biotic and abiotic controls on O2 dynamics, and O2 dynamics should be included in models of soil N cycling and trace gas fluxes

    Role of ATP hydrolysis in the DNA translocase activity of the bovine papillomavirus (BPV-1) E1 helicase

    Get PDF
    The E1 protein of bovine papillomavirus type-1 is the viral replication initiator protein and replicative helicase. Here we show that the C-terminal ∌300 amino acids of E1, that share homology with members of helicase superfamily 3 (SF3), can act as an autonomous helicase. E1 is monomeric in the absence of ATP but assembles into hexamers in the presence of ATP, single-stranded DNA (ssDNA) or both. A 16 base sequence is the minimum for efficient hexamerization, although the complex protects ∌30 bases from nuclease digestion, supporting the notion that the DNA is bound within the protein complex. In the absence of ATP, or in the presence of ADP or the non–hydrolysable ATP analogue AMP–PNP, the interaction with short ssDNA oligonucleotides is exceptionally tight (T(1/2) > 6 h). However, in the presence of ATP, the interaction with DNA is destabilized (T(1/2) ∌60 s). These results suggest that during the ATP hydrolysis cycle an internal DNA-binding site oscillates from a high to a low-affinity state, while protein–protein interactions switch from low to high affinity. This reciprocal change in protein–protein and protein–DNA affinities could be part of a mechanism for tethering the protein to its substrate while unidirectional movement along DNA proceeds

    Embedding of psycho-perceptual-motor skills can improve athlete assessment and training programs

    Get PDF
    Practitioners in a variety of sports seek unique ways to train athletes to better prepare them for competition. In this position paper, we argue that inclusion of psycho-perceptual-motor skills, from the fields of sport psychology and sport expertise, is crucial, but underutilized in the assessment and training of athletes. First, a brief introduction is provided as to why psycho-perceptual-motor skill is vital for training athletes. Second, examples are discussed relating to key concepts. These include the following: assessment of expertise discriminators such as visual anticipation under pressure contexts, incorporation of sports analytics and performance analysis to aid reflection upon previous experiences of good anticipation and coping with pressure, use of qualitative and quantitative measures to understand processes underlying performance and learning, as well as design of representative tasks for assessment and training anticipation under pressure contexts. Third, some recommendations are made to practitioners of sports teams to assist them in taking advantage of psycho-perceptual-motor skill to better prepare athletes for competition. Collectively, we hope this paper stimulates collaboration between practitioners of sports teams and scientists to create a greater focus upon integrated sport psychology and sport expertise in the training of athletes
    • 

    corecore