49 research outputs found

    Soil O2 controls denitrification rates and N2O yield in a riparian wetland

    Get PDF
    [1] Wetland soil oxygen (O2) is rarely measured, which limits our understanding of a key regulator of nitrogen loss through denitrification. We asked: (1) How does soil [O2] vary in riparian wetlands? (2) How does this [O2] variation affect denitrification rates and end products? and (3) How does [O2] variation and previous exposure to O2affect trace gas fluxes? We collected a continuous seven-month record of [O2] dynamics in a “wet” and “dry” riparian zone. In April 2009, soil [O2] ranged from 0 to 13% and consistently increased with increasing distance from the stream. [O2] gradually declined in all sensors until all sensors went anoxic in early September 2009. In mid-fall, a dropping water table increased soil [O2] to 15–20% within a 2–3 day period. We measured denitrification using the Nitrogen-Free Air Recirculation Method (N-FARM), a direct measurement of N2 production against a helium background. Denitrification rates were significantly higher in the wetter areas, which correlated to lower O2 conditions. Denitrification rates in the drier areas correlated with [O2] in the early spring and summer, but significantly decreased in late summer despite decreasing O2 concentrations. Increasing [O2] significantly increased core N2O production, and therefore may be an important control on nitrous oxide yield. Field N2O fluxes, however, were highly variable, ranging from 0 to 800 ug N m−2 hr−1 with no differences between the wet and dry sites. Future research should focus on understanding the biotic and abiotic controls on O2 dynamics, and O2 dynamics should be included in models of soil N cycling and trace gas fluxes

    Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    Get PDF
    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0–3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase

    Soil Oxygen Dynamics: Patterns and Lessons from Six Years of High Frequency Monitoring

    Get PDF
    Soil oxygen (O2) is a fundamental control on terrestrial biogeochemical cycles including processes producing and consuming greenhouse gases (GHG), yet it is rarely measured. Instead, soil O2 is assumed to be proportional to soil moisture and physical soil properties. For example, soil O2 is often inferred from a 25-year old steady-state diffusion model; however, few data exist to test this model in stochastic systems. The variability of soil O2 may be particularly important to GHG emissions from aquatic-terrestrial interface zones because of the convergence of variable hydrology and rapid biogeochemical processing. Our objective is to gain a better understanding of soil O2 variation and its role in controlling GHG emissions across aquatic-terrestrial interface zones. Specifically, we hypothesize that in aquatic-terrestrial interface ecosystems, soil moisture predicts O2 concentration under stable conditions, but under dynamic conditions (e.g., water table fluctuations or precipitation) heterogeneous distributions of water-filled soil pore space complicate this prediction. Furthermore, we hypothesize that GHG emissions will correspond to variation in soil O2. Twenty-four near-continuous (30-minute frequency) soil O2 and moisture sensors were monitored for more than six years. The sensors were installed at 10 cm of depth across an aquatic-terrestrial interface of a constructed wetland in April 2012 and removed in July 2018. Diurnal, precipitation and drainage events, seasonal, and longer-term patterns were in soil O2 observed. Drought conditions (2012) resulted in minimal soil O2 variation; however, a diurnal pattern of lower soil O2 during the day was observed. When precipitation increases within and among sensor soil O2 variation increases. The relationship between soil moisture and soil O2 was non-linear during periods of soil drainage and precipitation. Commonly, a rapid (change of 10% over <24 hours) increase in soil O2 occurred during soil drainage near a common threshold. As soil moisture increased due to precipitation, soil O2 decreased slower than predicted by simple diffusion models. Soil O2 was an important predictor of weekly methane and nitrous oxide emissions correspond to variation in soil O2. These soil O2 data will be useful for understanding multiple soil biogeochemical functions

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 - 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Denitrification by sulfur-oxidizing bacteria in a eutrophic lake

    Get PDF
    Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3 −) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3 −) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3 − in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 μM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO4 2−), suggesting that the added NO3 − was used to oxidize H2S to SO4 2−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3 − addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 × 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Spatiotemporal predictions of soil properties and states in variably saturated landscapes

    Get PDF
    Understanding greenhouse gas (GHG) fluxes from landscapes with variably saturated soil conditions is challenging given the highly dynamic nature of GHG fluxes in both space and time, dubbed hot spots, and hot moments. On one hand, our ability to directly monitor these processes is limited by sparse in situ and surface chamber observational networks. On the other hand, remote sensing approaches provide spatial data sets but are limited by infrequent imaging over time. We use a robust statistical framework to merge sparse sensor network observations with reconnaissance style hydrogeophysical mapping at a well‐characterized site in Ohio. We find that combining time‐lapse electromagnetic induction surveys with empirical orthogonal functions provides additional environmental covariates related to soil properties and states at high spatial resolutions (~5 m). A cross‐validation experiment using eight different spatial interpolation methods versus 120 in situ soil cores indicated an ~30% reduction in root‐mean‐square error for soil properties (clay weight percent and total soil carbon weight percent) using hydrogeophysical derived environmental covariates with regression kriging. In addition, the hydrogeophysical derived environmental covariates were found to be good predictors of soil states (soil temperature, soil water content, and soil oxygen). The presented framework allows for temporal gap filling of individual sensor data sets as well as provides flexible geometric interpolation to complex areas/volumes. We anticipate that the framework, with its flexible temporal and spatial monitoring options, will be useful in designing future monitoring networks as well as support the next generation of hyper‐resolution hydrologic and biogeochemical models

    Restarting the conversation: challenges at the interface between ecology and society

    Get PDF
    The exchange of information between researchers, resource managers, decision makers, and the general public has long been recognized as a critical need in environmental science. We examine the challenges in using ecological knowledge to inform society and to change societal actions, and identify a set of options and strategies to enhance this exchange. Our objectives are to provide background information on societal knowledge and interest in science and environmental issues, to describe how different components of society obtain information and develop their interests and values, and to present a framework for evaluating and improving communication between science and society. Our analysis strongly suggests that the interface between science and society can only be improved with renewed dedication to public outreach and a wholesale reconsideration of the way that scientists communicate with society. Ecologists need to adopt new models of engagement with their audiences, frame their results in ways that are more meaningful to these audiences, and use new communication tools, capable of reaching large and diverse target groups

    Weather whiplash in agricultural regions drives deterioration of water quality

    Get PDF
    Excess nitrogen (N) impairs inland water quality and creates hypoxia in coastal ecosystems. Agriculture is the primary source of N; agricultural management and hydrology together control aquatic ecosystem N loading. Future N loading will be determined by how agriculture and hydrology intersect with climate change, yet the interactions between changing climate and water quality remain poorly understood. Here, we show that changing precipitation patterns, resulting from climate change, interact with agricultural land use to deteriorate water quality. We focus on the 2012â2013 Midwestern U.S. drought as a ânatural experimentâ. The transition from drought conditions in 2012 to a wet spring in 2013 was abrupt; the media dubbed this âweather whiplashâ. We use recent (2010â2015) and historical data (1950â2015) to connect weather whiplash (drought-to-flood transitions) to increases in riverine N loads and concentrations. The drought likely created highly N-enriched soils; this excess N mobilized during heavy spring rains (2013), resulting in a 34% increase (10.5 vs. 7.8 mg N Lâ»Â¹) in the flow-weighted mean annual nitrate concentration compared to recent years. Furthermore, we show that climate change will likely intensify weather whiplash. Increased weather whiplash will, in part, increase the frequency of riverine N exceeding E.P.A. drinking water standards. Thus, our observations suggest increased climatic variation will amplify negative tren

    Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    Get PDF
    We measured uptake length of 15NO3− in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO3− uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO3− concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO3− uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (SWtot). Uptake length increased with specific discharge (Q/w) and increasing NO3− concentrations, showing a loss in removal efficiency in streams with high NO3− concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO3− removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO3− uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO3− uptake lengths via directly increasing both gross primary production and NO3− concentration. Gross primary production shortened SWtot, while increasing NO3− lengthened SWtot resulting in no net effect of land use on NO3− removal
    corecore