1,612 research outputs found

    Exciton dissociation at donor-acceptor polymer heterojunctions: quantum nonadiabatic dynamics and effective-mode analysis

    Full text link
    The quantum-dynamical mechanism of photoinduced subpicosecond exciton dissociation and the concomitant formation of a charge-separated state at a TFB:F8BT polymer heterojunction is elucidated. The analysis is based upon a two-state vibronic coupling Hamiltonian including an explicit 24-mode representation of a phonon bath comprising high-frequency (C==C stretch) and low-frequency (torsional) modes. The initial relaxation behavior is characterized by coherent oscillations, along with the decay through an extended nonadiabatic coupling region. This region is located in the vicinity of a conical intersection hypersurface. A central ingredient of the analysis is a novel effective mode representation, which highlights the role of the low-frequency modes in the nonadiabatic dynamics. Quantum dynamical simulations were carried out using the multiconfiguration time-dependent Hartree (MCTDH) method

    Local-in-Time Error in Variational Quantum Dynamics

    Get PDF
    The McLachlan "minimum-distance" principle for optimizing approximate solutions of the time-dependent Schrodinger equation is revisited, with a focus on the local-in-time error accompanying the variational solutions. Simple, exact expressions are provided for this error, which are then evaluated in illustrative cases, notably the widely used mean-field approach and the adiabatic quantum molecular dynamics. Based on these findings, we demonstrate the rigorous formulation of an adaptive scheme that resizes on the fly the underlying variational manifold and, hence, optimizes the overall computational cost of a quantum dynamical simulation. Such adaptive schemes are a crucial requirement for devising and applying direct quantum dynamical methods to molecular and condensed-phase problems

    Universal Markovian reduction of Brownian particle dynamics

    Full text link
    Non-Markovian processes can often be turned Markovian by enlarging the set of variables. Here we show, by an explicit construction, how this can be done for the dynamics of a Brownian particle obeying the generalized Langevin equation. Given an arbitrary bath spectral density J0J_{0}, we introduce an orthogonal transformation of the bath variables into effective modes, leading stepwise to a semi-infinite chain with nearest-neighbor interactions. The transformation is uniquely determined by J0J_{0} and defines a sequence {Jn}n∈N\{J_{n}\}_{n\in\mathbb{N}} of residual spectral densities describing the interaction of the terminal chain mode, at each step, with the remaining bath. We derive a simple, one-term recurrence relation for this sequence, and show that its limit is the quasi-Ohmic expression provided by the Rubin model of dissipation. Numerical calculations show that, irrespective of the details of J0J_{0}, convergence is fast enough to be useful in practice for an effective Markovian reduction of quantum dissipative dynamics

    Phonon-driven ultrafast exciton dissociation at donor-acceptor polymer heterojunctions

    Full text link
    A quantum-dynamical analysis of phonon-driven exciton dissociation at polymer heterojunctions is presented, using a hierarchical electron-phonon model parameterized for three electronic states and 24 vibrational modes. Two interfering decay pathways are identified: a direct charge separation, and an indirect pathway via an intermediate bridge state. Both pathways depend critically on the dynamical interplay of high-frequency C=C stretch modes and low-frequency ring-torsional modes. The ultrafast, highly non-equilibrium dynamics is consistent with time-resolved spectroscopic observations

    Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Get PDF
    We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene-fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway

    Multi-configurational Ehrenfest simulations of ultrafast nonadiabatic dynamics in a charge-transfer complex

    Get PDF
    Multi-configurational Ehrenfest (MCE) approaches, which are intended to remedy the lack of correlations in the standard mean-field Ehrenfest method, have been proposed as coherent-state based ansatze for quantum propagation [D. V. Shalashilin, J. Chem. Phys. 130, 244101 (2009)] and also as the classical limit of the variational Gaussian-based multiconfiguration time dependent Hartree (G-MCTDH) method [S. Romer and I. Burghardt, Mol. Phys. 111, 3618 (2013)]. In the present paper, we establish the formal connection between these schemes and assess the performance of MCE for a coherent-state representation of the classical-limit subsystem. As a representative model system, we address the ultrafast, coherent charge transfer dynamics in an oligothiophene-fullerene donor acceptor complex described by a two-state linear vibronic coupling model. MCE calculations are compared with reference calculations performed with the MC IDH method, for 10-40 vibrational modes. Beyond a dimensionality of 10 modes, it is shown that the correct representation of electronic coherence depends crucially on the sampling of initially unoccupied Gaussians

    Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    Get PDF
    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics
    • …
    corecore