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Quantum dynamics of hydrogen atoms on graphene:
I. System-bath modeling

Matteo Bonfanti,1, a) Bret Jackson,2 Keith H. Hughes,3 Irene Burghardt,4 and Rocco Martinazzo1, 5, b)
1)Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano,
Italy
2)Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003,
United States
3)School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, UK
4)Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7,
60438 Frankfurt/Main, Germany
5)Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano,
Italy

An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on
graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that
forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on
density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained
from an empirical force field through inversion of a classical equilibrium correlation function describing the
hydrogen motion. By construction, model building easily accommodates improvements coming from the use
of higher level electronic structure theory for the system. Further, it is well suited to a determination of
the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-
bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed
hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent
Hartree method. A follow-up paper deals with the sticking dynamics.

PACS numbers: Valid PACS appear here
Keywords: Hydrogen sticking, quantum dynamics, system-bath

I. INTRODUCTION

In the last decade, hydrogen sticking on
graphitic/graphenic surfaces has been one of the
most studied gas-surface scattering problems. Apart
from being a challenging model system for which a
variety of experimental results is available, the inter-
est has been mainly triggered by focus issues in two
different research fields. First, since the 2010 Nobel
Prize for graphene discovery, chemical modification of
graphene has been considered a possible route for the
development of carbon based materials which might
couple the extraordinary electronic, mechanical and
thermal properties of graphene with the presence of
a band gap1,2. Second, it has been long established
that molecular hydrogen formation in the interstellar
medium (ISM) proceeds via surface chemistry at the
carbonaceous, graphitic-like surfaces of dust particles.
Thus, hydrogen adsorption on graphite is considered a
key step for the ISM chemistry and its quantification
is fundamental for the development of astrophysical
models of star evolution3–5.

Energetics of hydrogen adsorption has been exten-
sively studied, mostly at the Density Functional The-
ory (DFT) level with the periodic supercell approach6–10

a)Electronic mail: matteo.bonfanti@unimi.it
b)Electronic mail: rocco.martinazzo@unimi.it

and more lately with some accurate wave function cal-
culations on cluster models11–14. Many different aspects
have been addressed, including adsorption and diffusion
in the shallow physisorption well11, single and multiple
adsorption in the chemisorption well9,15–17, carbon va-
cancy hydrogenation18 and binding to edges13,19. All
these possibilities determine a vast variety of cases which
can be well interpreted and rationalized in terms of elec-
tronic and structural effects.

While the energetics of hydrogen adsorption has been
well understood and the dynamics of sticking and diffus-
ing hydrogen in the ∼40 meV physisorption state have
been accurately described11,20–22, there are still unset-
tled issues concerning chemisorption that need further
investigations. First, the accurate value of the barrier
height is still not clear. On one hand, most DFT peri-
odic calculations in the Generalized Gradient Approxi-
mation (GGA) give a barrier of ∼0.2 eV, a value which
is considerably reduced when Van der Waals corrected
functionals are employed23. On the other hand, accu-
rate wave functions calculations on cluster models by
Wang et. al.14 suggest that GGA functionals overesti-
mate the binding energy, hence underestimate the bar-
rier (by more than 0.2 eV, see Ref. 14). Secondly, at any
coverage but the lowest (say, around 1%), hydrogen has
shown a tendency for clustering15,24,25, as a consequence
of the extended aromatic nature of graphene/graphite.
Thus, accounting for this fact requires a number of dif-
ferent adsorption situations with very different reaction
barriers9,26. Finally, despite the apparent simplicity of



2

the system, building a dynamical model which is suited
to study the process in the low collision energy regime
remains a challenging problem. Many models have been
proposed in the past, highlighting that many different
effects need to be simultaneously accounted for to reach
a quantitative description of the process23,26–32: i) due
to the fast substrate relaxation induced by the sp2–sp3
conversion, forces on the binding carbon atom are large
and the motion of the latter is strongly coupled to the
hydrogen coordinate27; ii) a large fraction of the reac-
tion takes place at the non collinear geometries, since
steering of the projectile is operative28; iii) energy relax-
ation to graphene phonons is a relatively fast process and
large amounts of energy need to be transferred such that
saturation effects are likely when truncating the phonon
basis26,32; iv) quantum effects have large consequences on
the sticking probability, particularly at the low incident
energies of interest for the chemistry of the ISM where
tunneling dominates23,28,30,31.

In the present work we devise a model for hydrogen
chemisorption that takes into account all the require-
ments listed above, and use it in a fully quantum study
of the sticking dynamics. The model consists of an ac-
curate description of the hydrogen atom and its bonding
carbon atom, which are coupled to the graphene sub-
strate described by a phonon bath. Both system and
phonon bath are treated with numerically exact, high di-
mensional quantum dynamical methods.

The model presented below is based on the potential
energy surface of the CH moiety developed a while ago
by one of the present authors and his collaborators20,28.
This ’system potential’ is given as a simple analytical
functional form fit to the results of periodic, plane-wave
DFT calculations28, which used a simple, semi-local ap-
proximation to the exact exchange-correlation functional
(the PW91 GGA functional). As for the coupling of
the CH bond to the rest of the graphene surface, the
model relies on dynamical information which are here re-
trieved from equilibrium molecular dynamics simulations
of the CH system connected to an accurate force field of
the lattice33 via a Surface Oscillator (SO) model-type
coupling20. The overall modeling though has been de-
signed to be “modular”, and work is already in progress
to improve both the CH description and the system-
environment coupling, exploiting the progress in density
functional theory and the increase of computational re-
sources that have occurred since the work of Ref.s 20 and
28. Among these developments, noteworthy is the formu-
lation of accurate vdW-DFT functionals which overcome
some of the limitations of the semi-local functionals34,35,
namely the impossibility of describing non-local disper-
sion forces which have been recently shown to affect both
the physisorption well and the sticking barrier in the
present problem23. Furthermore, the possibility of us-
ing nowadays direct, ab initio molecular dynamics ap-
proaches allows one to bypass the need of developing
lattice potentials and modeling the system-environment
coupling when describing energy transfer to the surface.

In the present paper, henceforth denoted paper I, we
derive the model, check its consistency and use it to study
the relaxation of a vibrationally excited adsorbed hydro-
gen. In the following paper, henceforth denoted paper II,
we extend the approach to the quantum dynamical, dis-
sipative scattering setting needed to investigate sticking
of a hydrogen atom to the graphene surface.

This paper is organized as follows. In Section II, we
present the methodology we developed for the construc-
tion of our model Hamiltonian. In Section III we give
a brief account of the properties of the H-graphene po-
tential energy surface. In Section IV, we briefly describe
the methodology employed for performing the classical
and quantum dynamical simulations, and in Section V
we present our main results. Finally Section VI summa-
rizes and concludes.

II. THEORY

Fully atomistic potential models, irrespective of their
origin and of their quality, are not suited for high dimen-
sional quantum dynamical simulations. Strong coupling
within sparse sets of degrees of freedom (most often ir-
relevant for the problem of interest) prevents the use of
any general truncation scheme that is crucial for applying
numerical methods. In order to make progress in investi-
gating the sticking dynamics of interest we rely on the fol-
lowing assumptions: (i) the energy exchange that occurs
between the system and the lattice for near equilibrium
configurations is representative of energy dissipation; (ii)
relaxation proceeds through sequential energy transfer
from the hydrogen atom to the carbon atom, which is
in turn the only one directly coupled to the rest of the
lattice through its height coordinate zC above the sur-
face; (iii) a mapping holds, at least approximately, which
relates the classical Hamiltonian dynamics of the inter-
esting C and H atoms to a generalized Langevin equation
(GLE) description. In (iii) it is inferred that if the sys-
tem is a single degree of freedom s, generally referred to
as the “Brownian particle”, its dynamics can be described
by the GLE

ms̈(t) +m

ˆ +∞

−∞
γ(t− τ)ṡ(τ)dτ + V ′(s(t)) = ξ(t) (1)

where γ(t) is a memory kernel obeying causality (γ(t) = 0
for t < 0) and ξ(t) a Gaussian stochastic process related
to γ(t) by a fluctuation-dissipation theorem of the sec-
ond kind, 〈ξ(t)ξ(0)〉 = kBT/mγ(|t|). Here and in the
following 〈..〉 denotes an average over the canonical equi-
librium, T is the temperature and kB the Boltzmann con-
stant. The advantage of using (iii) is the equivalence of
the above GLE with the dynamics generated by the Inde-
pendent Oscillator (IO) (also known as Caldeira-Leggett)
Hamiltonian36

HIO =
p2s
2m

+ V (s) +

F∑
k=1

[
p2k
2

+
ω2
k

2

(
qk −

ck
ω2
k

s

)2
]

(2)
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Figure 1. Schematic illustration of the coordinates adopted
for the description of the CH system.

For a finite number of oscillators F , a strict equiva-
lence between Eq.(1) and Eq.(2) only holds for times
less than the Poincaré recurrence time trec, and provided
the bath oscillator frequencies ωk and coupling coeffi-
cients ck sample the so-called spectral density (SD) of
the environmental coupling36. The latter is defined as
J(ω) = mω<γ̃(ω), where γ̃(ω) =

´ +∞
−∞ γ(t)eiωtdt is the

frequency-dependent memory kernel. The SD fully deter-
mines γ̃(ω), hence the GLE, by virtue of the celebrated
Kramers-Kronig relation, and thus contains all the nec-
essary information about the coupling of the system to
the environment. For an evenly spaced set of frequencies
ωk = k∆ω the couplings read as ck =

√
2ωk∆ωJ0(ωk)/π

and trec = 2π/∆ω. The advantage of an IO Hamiltonian
description is of course that it provides a much simpler
(but equivalent) model of the original atomistic Hamil-
tonian, whose quantized version can be tackled with nu-
merically exact wave packet techniques up to several tens
of degrees of freedom (DOFs).

Clearly, in studying the sticking of H atoms in the
chemisorption regime both the H and the binding C atom
need to be included in the “Brownian” particle. Hence,
assumption (ii) implies that the GLE remains effectively
one-dimensional (as opposed to a more general multidi-
mensional GLE) and that the relevant (scalar) spectral
density describes the coupling of the binding C atom with
the rest of the surface. In other words, the final, working
IO model takes the form37

H =
p2
H

2mH
+

p2C
2mC

+ Vs(xH , zC)+ (3)

+

F∑
k=1

[
p2k
2

+
ω2
k

2

(
qk −

ck
ω2
k

(zC − zeqC )

)2
]

where xH is the position of the H atom, zC the height

of the binding C atom above the surface, pH and pC the
corresponding momenta, and Vs(xH , zC) an appropriate
4D system potential (see Fig.1 for the definition of the
system coordinates). The frequencies ωk and couplings
ck of the IO bath sample a spectral density JC(ω) that
describes the coupling of the C atom to the rest of the lat-
tice. Constructing the latter represents one of the main
goals of our system-bath modeling that, according to as-
sumption (i), can be accomplished with the help of clas-
sical (canonical) molecular dynamics simulations of the
equilibrium state of the H-graphene system. In the fol-
lowing section II.A it is shown how assumption (i) above
(along with (ii)) can be exploited to obtain JC(ω) from
the equilibrium dynamics of the hydrogen atom above
the surface (zH); section II.B gives some details about
the choice of the system potential.

A. Spectral density

For small oscillations around the equilibrium position
zeqH , the height of the hydrogen atom undergoes Harmonic
Brownian motion

z̈H(t) +

ˆ +∞

−∞
γH(t− τ)żH(τ)dτ + ω2

0zH(t) = ξH(t)/mH

(where ω0 is its frequency and γH ,ξH characterize its
environment), and the equilibrium correlation func-
tion of its displacement CH(t) = 〈δzH(t)δzH(0)〉 =
〈(zH(t)− zeqH )(zH(0)− zeqH )〉 is related to the memory
kernel through38

1

2
ωC̃H(ω) =

kBT

mH
=
(

1

ω2
0 − ω2 − iωγ̃H(ω)

)
(4)

Here, C̃H(ω) =
´
eiωtCH(t)dt is the frequency dependent

correlation function39. As shown in Ref. 40 this equation
can be “inverted” to give the spectral density JH(ω) =

mHω<γ̃H(ω) in terms of C̃H(ω)

JH(ω) =
kBT

2

ωC̃H(ω)

|Γ+(ω)|2
(5)

where Γ(z) is the “Cauchy transform” of the function
C̃H(ω)ω/2

Γ(z) =
1

π

ˆ +∞

−∞

ωC̃H(ω)/2

ω − z
dω

and Γ+(ω) = limε→0+ Γ(ω+iε) is its limit on the real axis
from the upper half plane. (As was shown in Ref. 40, one
can equivalently define Γ(z) = izĈH(z) + CH(0), where
ĈH(z) =

´∞
0
eiztCH(t)dt (=z > 0) is the Fourier-Laplace

transform of the retarded correlation function).
The spectral density JH(ω) describes the coupling of

the hydrogen atom to its environment which, according
to our assumption (ii), reduces to the height zC of the
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binding C atom that in turn couples to the rest of the
surface. Hence, the coordinate zC is, to within a mass
factor, the first effective mode in the general effective-
mode transformation that brings the environment felt by
the hydrogen atom into a linear chain form41–44 . Using
the results of Ref. 43 the required spectral density follows
from

JC(ω) =
D2
CJH(ω)

|W+
H (ω)|2

(6)

where

D2
C =

2mC

π

ˆ ∞
0

JH(ω)ωdω

is the relevant effective mode coupling and WH(z) is the
Cauchy transform of JH(ω),

WH(z) =
1

π

ˆ +∞

−∞

JH(ω)

ω − z
dω

Eqs. (5) and (6) are the working equations, giving ex-
plicitly the SD felt by the C atom in terms of CH(t).
Together with the system potential to be specified be-
low, Eqs. (5) and (6) allow us to completely define the
Hamiltonian model of Eq. (3). They require as input
some information about the equilibrium dynamics of the
adsorbed H atom above the surface, which might come
from spectroscopic data or, more commonly, from sim-
ple, unconstrained canonical molecular dynamics. To
this end, a “source” for such equilibrium dynamics has
to be defined. In this work we used classical dynamics
simulations based on the successful atomistic model de-
veloped some years ago by Kerwin and Jackson26 (see
Section III), since this choice allows us to compare our
results with available literature data. We stress though
that Eqs. (5) and (6) make use only of dynamical in-
formation and are well suited to an ab initio molecular
dynamics approach, thereby bypassing the need of the
time-consuming steps that are required for building an
atomistic model.

B. System potential

Once the coupling of the C atom with its environment
has been defined with the aid of the corresponding spec-
tral density JC(ω), the working Hamiltonian model of
Eq. (3) is completely specified by defining the system
potential Vs(xH , zC) that describes the interaction of the
H atom with the binding carbon. From the form of Eq.
(3), provided that condition (iii) holds, the system poten-
tial should describe the interactions within the system in
the partial equilibrium state where the bath coordinates
minimize the total potential for each value of the system
coordinates (xH , zC). Accordingly, we define the system
potential as

Vs(xH , zC) = Min
{Q}

Vat(xH , zC ,Q) (7)

where Vat is the atomistic model of the H-graphene sys-
tem developed some years ago by Kerwin and Jackson26,
which is based on an analytic fit to first-principles data28
and on an empirical lattice model for graphene33. This
potential is a function of a number of lattice coordinates
{Q1, Q2, ..QN} = Q and is described in some detail below
since it is also our source model for the spectral density of
the binding carbon atom. Here we note that the system
potential Vs as defined by the above equation differs only
marginally from the original CH potential of Ref. 26 but
its introduction is unavoidable if a strict comparison has
to be made between the system-bath dynamics and the
one resulting from the lattice model.

III. THE “SOURCE” MODEL

As mentioned above, an atomistic interaction
potential26 was used to generate the necessary dynamical
information on the system. This potential was obtained
by connecting an accurate C-H system potential VCH to
an empirical graphene force field, via a Surface Oscillator
(SO) model-type coupling45. The analytic form of the C-
H potential is described in detail in Ref. 28. It is given as
a function of three coordinates, V 3D

CH = V 3D
CH(zH , zC , ρ),

two for the hydrogen atom and one for the nearest car-
bon atom, namely the height of the two above the surface
(zH and zC , respectively) and the projection of the C-H
bond length onto the surface (ρ). In our simulations,
we preferred to re-express the potential as a function of
the in-plane Cartesian coordinates of the hydrogen atom,
namely with x

‖
H ≡ (xH , yH) and the C atom at the ori-

gin, we set VCH(x
‖
H , zH , zC) = V 3D

CH(zH , zC , ||x‖H ||)). We
thus adopted a redundant set of variables that does not
exploit the cylindrical invariance of the original potential
energy surface (PES) that was well supported by the ab
initio data28. This choice results in a simpler represen-
tation of the kinetic energy operator and easily accom-
modates any improvements of the system potential that
may result from relaxing the assumption of a rotationally
invariant interaction28.

The graphene phonon potential is a force field for a
cluster of a total of 121 carbon atoms with in-plane co-
ordinates (Xα, Yα) fixed and arranged in a honeycomb
lattice. This part of the PES is thus a function of 121
displacement of the atoms normal to the surface zα (in-
cluding the C atom that the hydrogen binds to, which
in this context may be referred to as C0), and describes
graphene transverse phonons only, i.e. the transverse
acoustical (flexural) mode ZA and the transverse optical
mode (ZO)46. This approximation seems to be reason-
able for the sticking problem of interest, and although
not essential for the success of the model, motivation for
the approximation was the simpler coding of the lattice
model that it allows for, when compared to the original,
accurate but rather complicated force field developed by
Aizawa et al.33.

The C-H system and the graphene lattice are coupled
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Figure 2. Total density of phonon states obtained from the
potential potential of Ref. 26 in two limiting cases. Black
line for the case where the hydrogen atom is far from the flat
surface. Blue line for H adsorbed on the puckered surface.
The inset is a close-up of the spectral region of graphene,
between 0.0 and 900.0 cm−1. Eigenmodes have been Gaussian
broadened by ... eV to mimic a continuos density of state.

to each other through a SO model-type coupling, namely

Vat(xH , zC ,Q) = VCH(x
‖
H , zH −Q0, zC −Q0)+

+ Vl(zC , z1, ..zN )− 1

2
kC(zC −Q0)2

where Qk ≡ zk are the heights of the carbon atoms other
than C0, Q0 is the average height of the three carbon
atoms closest to the adsorption site, Q0 = (z1+z2+z3)/3,
Vl is the Aizawa et al.33 lattice potential for transverse
motion and the rightmost term avoids double counting
(kC being the force constant for the puckering of C0

alone, as obtained from the lattice model)26.
In agreement with the well established picture of hy-

drogen chemisorption on graphene, the adopted poten-
tial predicts that in the minimum energy structure the
surface “puckers” to allow the sp2 →sp3 re-hybridization
necessary for the carbon atom to bind the hydrogen atom.
This surface reconstruction brings the carbon atom 0.426
Å out of the plane defined by the three nearest neighbor
carbon atoms. The C-H bond length is 1.11 Å and the
binding energy is 0.767 eV. To reach this stable config-
uration from the gas-phase along the minimum energy
path, the hydrogen atom has to overcome an energy bar-
rier 0.235 eV high, which is found at zH = 1.97 Å and zC
= 0.110 Å. The PES further features a shallow physisorp-
tion well (∼ 9 meV deep) when the hydrogen atom is far
from the surface, ∼ 3.0 Å above it, which is though far
from the accepted value of∼40 meV, as obtained from the
analysis of selective adsorption resonances in scattering
experiments47 and confirmed by accurate wavefunction-
based calculations11.

We computed the phonon Density of States (DOS) of
the model cluster by performing a normal mode analysis,
in which the Hessian matrix was obtained with first or-
der finite differences of the analytic first derivatives of the
potential. Fig. 2 shows both the DOS computed when
the hydrogen atom is far from the surface (where the po-

tential reduces to the force field of the lattice) and the
DOS in the stable adsorption geometry. From the first
we see that the highest frequency peak in the spectrum
occurs at 874 cm−1, consistent with a model containing
only transverse optical and acoustic phonon branches33.
Hydrogen adsorption introduces two new modes at fre-
quencies well above the graphene region: one stretching
mode at 2549 cm−1 and a twofold degenerate bending
at 1169 cm−1. Furthermore, some of the carbon cluster
frequencies are shifted, as a consequence of the pucker-
ing of the graphene sheet and of the strong coupling of a
carbon atom with the adsorbate.

In light of this separation between the C-H system and
the graphene phonon bath, we further looked at the nor-
mal modes of the 4D system potential only, which were
obtained by fixing all the lattice coordinates in the equi-
librium geometry, but the one involved in the CH bond.
The resulting four normal modes are:

• a doubly degenerate bending at 1169.48 cm−1 ,
which only involves displacements of ρ and is thus
completely uncoupled from the z coordinates (at
the harmonic level)

• a 2549.36 cm−1 C-H stretching mode

• a 466.50 cm−1 “surface” stretching mode, which ap-
proximately corresponds to block oscillations of the
C-H unit above the surface plane

The lack of coupling between ρ and the other z coor-
dinates is a direct consequence of the cylindrical sym-
metry of the potential itself28, which demands it be
quadratic everywhere in ρ at quasi-collinear configura-
tions, V 3D

CH(zH , zC , ρ) ≈ ρ2κ(zH , zC), i.e. in the neigh-
borhoods of the minimum structure (ρ = 0). Hence, the
lateral displacement does not mix with either zC or zH
in the equilibrium configuration (∂2V 3D

CH/∂ρ∂z|ρ=0 = 0
for z = zH or zC).

It should be noted that both the C-H bending and
the stretching frequencies hardly change from their full
DOS values when constraining the lattice carbon atoms
in plane. These vibrations are well above the graphene
cutoff (“Debye”) frequency and are thus dynamically de-
coupled from the graphene bath. In contrast, the surface
stretching mode, which is very similar to a carbon atom
normal displacement, is well within the surface phonon
band and strongly coupled to the lattice.

Overall, our findings are in excellent agreement with
the first principles results of Sakong and Kratzer48, who
used a larger (five dimensional) dynamical matrix and
found the C-H stretching at 2552 cm−1 and two bending
modes at 1175 and 1110 cm−1 . Of course, differently
from Fig. 2, the phonon DOS of Ref. 48 extends up
to 1583 cm−1 because of the inclusion of the higher fre-
quency longitudinal and shear optical branches33.
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Nr of trajectories 1000
Equilibration ∆t 0.02 fs
Equilibration τrelax = γ−1 5.0 fs
Equilibration time 2.0 ps
Propagation ∆t 0.01 fs
Relax at the edges τedges 100.0 fs
Propagation time 10.0 ps
Time step of trajectory sampling 0.5 fs

Table I. Integration parameters of the MD simulations per-
formed with the “source” atomistic model.

IV. TECHNICALITIES

A. Classical molecular dynamics

Classical, equilibrium molecular dynamics (MD) simu-
lations were performed with the potential energy surface
described above. These simulations were then used to
compute the autocorrelation function of the displacement
of the hydrogen atom from its equilibrium structure and
the spectral functions according to the Eqs. (5,6). Ther-
mal averages were computed over a set of trajectories
with initial conditions sampling the canonical distribu-
tion, after a preliminary equilibration stage accomplished
via standard Langevin dynamics of each carbon atom of
the lattice (i.e. with white noise). After the equilibration
stage, Langevin dynamics was turned off everywhere ex-
cept at the edges of the carbon cluster, in order to mimic
an infinite carbon slab. During this second part of the
dynamics, the dynamical variable zH was sampled.

Time propagation was performed with a symplectic
propagator for Langevin dynamics49 that reduces to the
velocity-Verlet propagator when the damping is turned
off (γ → 0). Table I summarizes the main parameters of
the MD simulations. The relaxation rate at the cluster
edges was set to γ−1 = 100 fs and was chosen after care-
fully checking that it guarantees a reasonable broadening
of the peaks without strongly affecting the fine structure
of the correlation functions; furthermore, a γ−1 =100 fs
relaxation time is comparable to the one expected for
the coupling of the carbon cluster with the rest of the
graphene sheet.

The accumulated realizations δziH(t) = ziH(t) − zeqH
were then Fourier-transformed and used to compute the
frequency-dependent correlation function C̃(ω) with the
help of the Wiener-Khinchin theorem38,

Xi
tf

(ω) =

ˆ tf

0

δz̃iH(t)eiωtdt, C̃(ω) =
1

tf
|Xtf (ω)|2av

(where av stands for the average over the realizations of
the random variable Xtf ) and could in principle be di-
rectly used to obtain the hydrogen atom spectral density
JH(ω) and the carbon atom spectral density JC(ω) as
outlined in Section II. In practice though we had first to
smoothen the peaks of the spectra, by applying a Gaus-

sian damping in the time-domain with a 1.0 ps relaxation
time and then to filter out undesirable high-frequency
components. Indeed, while the total propagation time of
the trajectories gives a reasonably narrow frequency spac-
ing of 3.34 cm−1, the adopted time step gives rise to a
frequency cutoff larger than 60,000 cm−1, thereby includ-
ing a wide frequency region where the use of the Cauchy
transforms becomes numerically awkward because of the
vanishing small spectral weights. The adopted lower cut-
off of ωC =4000 cm−1 is a reasonable “unbiased” choice,
yet larger than the Debye cutoff frequency ωD of the
graphene sheet (ωD =874 cm−1 in our model, see Fig.
2). As a result, the spectral densities still contain some
undesired high frequency features recently discussed in
Ref. 40 and, in particular, a growing base line that is
due to the too slow decay of C̃(ω) above ωD. To remedy
this numerical problem, we applied a low frequency filter
to damp out the high frequency contributions, namely
we defined the working frequency-dependent correlation
function C̃H(ω) as

C̃H(ω) = C̃(ω) [1 + f(ω)] (8)

where50

f(ω) =

[(ω0

ω

)N
− 1

]
× exp

(
ωN0

ωN0 − ωN

)
Θ(ω − ω0)

(Θ(x) = 1 for x ≥ 0 and zero otherwise), ω0 =2541.0
cm−1 , and N=12. The filtering function tends to -1 at
large ω and goes smoothly to zero for ω → ω+

0 .

B. Quantum dynamics

High dimensional, quantum dynamical calculations
were carried out using the multi-configuration time-
dependent Hartree (MCTDH) method (Heidelberg
package51–54), for the system and a discrete sampling of
the bath modes. The system-bath coupling strengths ck
were obtained from the spectral density JC(ω) describ-
ing the interaction of the carbon atom C0 with the rest
of the lattice, ck =

√
2ωk∆ωJC(ωk)/π , with ωk = k∆ω

and for k = 1, ..F , with an appropriate number F of os-
cillators (see below). In this paper, vibrational relaxation
is used for illustrative purposes, while paper II is devoted
to simulations of the sticking process.

The 4D system potential Vs(xH , zC) as defined in Eq.
(7) was used as a reference to generate approximate vi-
brational eigenstates of the system, by using an exact
(Lanczos) diagonalization scheme. These functions were
then used to generate several product initial states with
the ground-state wavefunction of the uncoupled bath,
which were later propagated in time under the action
of the full IO Hamiltonian. For the primitive DVR grid
we used a Hermite basis set for all the degrees of freedom
- 10 points for zH , 30 for zC , 5 for xH and yH and 6 for
each of the xk’s - with appropriate masses and harmonic
frequencies. The adopted mode-combination scheme and
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Bath size F = 50 F = 75 F = 75

Frequency range / cm−1 [0, 900] [2100, 2900] [0,900] +
[2100,2900]

System 8 8 7
q1 ... q5 3 2 2
q6 ... q10 3 2 3
q11 ... q15 3 3 3
q16 ... q20 4 3 3
q21 ... q25 4 3 3
q26 ... q30 4 3 3
q31 ... q35 4 3 3
q36 ... q40 4 3 3
q41 ... q45 4 3 2
q46 ... q50 3 2 2
q51 ... q55 2 2
q56 ... q60 2 4
q61 ... q65 2 2
q66 ... q70 2 2
q71 ... q75 2 2

Table II. Mode-combination scheme and number of single par-
ticle functions used in the MCTDH quantum dynamical sim-
ulations described in the main text.

the number of single particle functions (spf’s) are sum-
marized in Table II, and were carefully checked to give
well converged results. Note that the system was de-
scribed with a single mode while the bath oscillators were
grouped in modes of five degrees of freedom.

Because of the unfavorable scaling of quantum dynam-
ics with the number of degrees of freedom, the bath
sizes were limited to 50 or 75 oscillators. To achieve a
good sampling of the spectral density, the equally spaced
bath frequencies were focused in the spectral region most
relevant for the various relaxation processes considered.
Thus, in the case of the relaxation of the surface stretch-
ing normal mode, we used a 0-900 cm−1 bath, whereas
when investigating relaxation of the C-H stretching mode
we focused on the range 2100-2900 cm−1. These spectral
regions were extended for investigating bending relax-
ation and when excitation involved more than one mode,
where both the low (0-900 cm−1) and the high (2100-2900
cm−1) frequency regions were sampled. These reduced
sampling schemes were carefully checked against simula-
tions using an uniform sampling of the SD in the 0-4000
cm−1 range (not shown). Apart from obvious differences
due to the shorter recurrence time and the coarser sam-
pling of the latter, a good agreement was found between
the two sets of calculations.
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Figure 3. Spectral functions obtained from molecular dy-
namics simulations with the source potential model described
in the main text. From top to bottom, (i) a semi-log plot
of the temperature scaled correlation function C(ω)T−1, (ii)
the spectral density of the coupling on the H atom (JH(ω))
and (iii) the spectral density of the coupling on the C atom
(JC(ω)). The different curves correspond to different values
of the temperature in the range 5-300 K, color coded from
blue to red for increasing values of T. Spectral function are
given in atomic units and the inset in the top panel is a linear
plot of the same graph.

V. RESULTS AND DISCUSSION

A. Spectral densities

A number of MD simulations for several temperatures
in the range 5-300 K were performed, and for each tem-
perature 1000 trajectories were run, with dissipation at
the cluster edges, according to the parameters given in
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Table I. This number is sufficient to obtain well con-
verged results and, importantly, is well within the limit of
an ab initio molecular dynamics approach. Fig. 3 shows
the results of these calculations, namely the frequency-
dependent correlation function of the H atom displace-
ment C̃H(ω), and the spectral densities JH(ω) and JC(ω)
obtained upon application of Eqs. (5) and (6). As is ev-
ident from the top panel of Fig. 3, two main structures
appear in C̃H(ω): a broad band at low frequencies, in the
0-900 cm−1 region, and a narrow peak at approximately
2500 cm−1 , which is consistent with phonon spectrum
and the normal mode analysis of the system given in
Section III (for the purpose of a comparison notice that
in Fig. 3 above C̃(ω) is given on a logarithmic scale).
The low frequency region is associated with the surface
stretching mode, which is strongly coupled to and mixed
with the lattice modes; this is manifested in a rather
broad band that has the width of the DOS of the cluster.
In contrast, the peak of the C-H stretching mode stands
out from a marginal background, in line with the lower
frequency cutoff of the bath. As discussed in Ref. 40, in
such a situation where the system frequency exceeds the
Debye frequency of the environment only a δ-peak should
ideally appear in a bilinear coupling model. In realistic
situations some broadening always occurs, for at least
three main reasons: (i) the system anharmonicities (see
below), (ii) the failure of the bilinear coupling assump-
tion and (iii) the dissipative-like trajectory propagation
conditions. The first arises because anharmonic effects
in the system potential cannot be handled with the ap-
proach outlined in Section II, and need to be known in
advance. They are readily recognized by their character-
istic temperature-dependent behavior, which makes them
more pronounced when the vibrator explores all regions
of the potential more extensively. Similarly for the ef-
fects of the failure of the bilinear-coupling model, which
are expected to become more evident when increasing the
temperatures. They are more subtle than the system an-
harmonicities but, differently from them, are representa-
tive of true system-environment interactions and can be
likely mapped into an “extended” bilinear model, where
bath modes appear with frequencies larger than the De-
bye frequency of the true environment. Finally, the third
cause of broadening is due to the algorithmic nature of
the molecular dynamics approach (e.g. the presence of
thermostats or the use of damping functions), and is sim-
ply impossible to eliminate in any real numerical appli-
cation.

As is evident from Fig. 3 (top panel), the low frequency
region is extremely stable with temperature, thereby sug-
gesting that this spectral region provides a sound and co-
herent representation of a real coupling between the hy-
drogen atom oscillations and the bath of lattice phonons.
On the other hand, the high frequency region is strongly
temperature-dependent, and presents a peak which pro-
gressively broadens when increasing the temperature. As
will be shown below, this effect is mainly due to the an-
harmonicity of the C-H system and thus should not be
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Figure 4. The spectral density of the coupling on the car-
bon atom JC(ω) as computed from the analysis of the source
potential (green line, see text for detail). Also shown for com-
parison, the trajectory-based spectral density reported in the
bottom panel of Fig. 3 (blue line, T = 5 K).

attributed to the stochastic properties of the environ-
ment. This is not a real problem for the IO model of
Eq. (3), since the latter uses a full anharmonic potential
for the C-H vibrator and thus includes these effects by
construction.

Application of Eq. (5) gives the spectral density acting
on the hydrogen atom, JH(ω). This function is negligi-
ble above ∼1200 cm−1, where a remnant of the high-
frequency stretching peak in C̃H(ω) appears but it is or-
ders of magnitude smaller than the values shown in Fig.
3 (middle panel). As is shown in that figure, the SD con-
tains a broad 0-900 cm−1 band, describing the (strong)
coupling of the C-H surface stretching mode with the
rest of the lattice, and a peak at ∼1100 cm−1 in corre-
spondence with the bending mode. The latter is slightly
temperature dependent, more likely as a consequence of
the same anharmonicity reason described above (notice
that we are probing the motion of the hydrogen atom
coordinate zH , which contains both surface stretching,
bending and stretching contributions).

Further application of the Cauchy transform through
Eq. (6) gives the spectral density on the carbon atom
JC(ω) which forms the basis of the IO model of Eq. (3).
As shown in Fig. 3 (bottom panel), and similarly to
C̃H(ω), JC(ω) presents a clear separation between the
region of the low frequency surface mode and that of
the high frequency stretching mode. The low frequency
region is again rather stable with temperature, and de-
scribes the interaction of the C-H unit with the lattice
phonon bath. This was confirmed with an independent
check where we performed a direct analysis of the source
potential and of the coupling it gives rise to. In this
case, the spectral density on the carbon atom JC(ω) was
obtained by the small-amplitude expansion around the
equilibrium structure through the expression

JC(ω) ≈ π

2

∑
k

c2k
Ωk

∆(ω − Ωk) (9)
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Figure 5. Harmonic approximation to the source model po-
tential. The figure shows a comparison between the spectral
density of the coupling on the carbon atom JC(ω) obtained
with the original potential (colored curves) and its harmonic
approximation (black), both at low and at a high temperature
(top and bottom panel for 5 K and 300 K, respectively).

where k runs over “constrained” normal modes of the
carbon cluster Q̃k , Ωk are the corresponding eigenfre-
quencies, ∆(x) is a broadened δ−peak and the coupling
coefficients ck are given by

ck =
∂2Vat

∂zC∂Q̃k
(xH , zC ,Q)

∣∣∣∣∣
eq

where Q = Q(Q̃1, ..Q̃N ). Here, the constrained modes
Q̃k were defined to be the normal modes of the lattice
when the system coordinates were held fixed at the global
equilibrium position. As illustrated in Fig. 4, the result-
ing JC(ω) compares reasonably well with the SDs shown
in the bottom panel of Fig. 3, the slight discrepancy
being likely a boundary effect only. Indeed, while the
potential-based approach used the finite cluster model,
the trajectory-based approach employed Langevin atoms
at the cluster edge to mimic the infinite lattice, thereby
effectively coupling (renormalizing) the long wavelength
(low frequency) modes with a continuum. Of course,
since none of the constrained eigenfrequencies exceeded
the lattice cutoff frequency, JC(ω) obtained in this way
has a strict Debye cutoff, ωD ∼ 900 cm−1.

To understand the origin of the structure of JC(ω)
at high frequencies additional MD simulations were per-
formed with a modified potential,

Vat(xH , zC ,Q)→

Vat(xH , zC ,Q)− VCH(x
‖
H , zH −Q0, zC −Q0)+

+ V
(2)
CH(x

‖
H , zH −Q0, zC −Q0) (10)
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Figure 6. The temperature scaled auto-correlation
C̃H(ω)T−1 as computed with either the original 4D system
potential (solid lines) or its restriction to the 2D collinear ar-
rangement (dashed lines), at three different temperatures T
= 5 K, 100 K and 300 K.

in which the 4D potential of the system VCH was replaced
by its quadratic expansion V (2)

CH around the global mini-
mum. The resulting carbon atom SDs for the harmonic
C-H system, as obtained at two different temperatures,
are depicted in Fig. 5 where is evident that the major
source of broadening in the high-frequency region is the
anharmonicity of the system potential. As mentioned
above, this can be considered a remediable failure of one
of our assumptions of Section II, since the IO model of
Eq. (3) correctly includes the full (anharmonic) C-H po-
tential. We ruled out other possible failures by perform-
ing additional tests with C-H constrained in the collinear
configuration: the results of such calculations, reported
in Fig. 6, show that energy transfer effectively occurs
only through the heights of the C and H atoms, at least
with our model potential. Thus, the residual peak and
the accompanying background which persist despite the
linearization of the model are either a signature of non-
linearities in the system-environment coupling or, more
likely, just artifacts of the MD.

In general, though, any partial failure of our assump-
tions (e.g. the above mentioned sequential energy trans-
fer) is necessarily mapped into a fictitious relaxation
pathway, thereby contributing to the broadening of the
high-frequency peak. For instance, it may well be that
bending-mediated relaxation becomes an operative en-
ergy relaxation pathway when relaxing the rotationally
invariant approximation on the C-H interaction but, ac-
cording to the protocol outlined in Section II, it will be
necessarily mapped into a high-frequency “bath”. Deter-
mining whether these contributions have a true “physical”
origin (and can thus be used as a surrogate of more com-
plicated interactions which cannot be captured by the
IO Hamiltonian coupling model) is generally a hard task.
For instance, in the example above of a bending-mediated
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Number of trajectories 1000

Bath cutoff frequency ωD 1000 cm−1

Number of oscillators F 300
Mass of the oscillators µ 12.0 amu
Temperature 5, 100, 300 K
Equilibration ∆t 0.02 fs
Equilibration τrelax = γ−1 5.0 fs
Equilibration time 2.0 ps
Time-step ∆t 0.01 fs
Propagation time 10.0 ps

Table III. Parameters of the MD simulations using the derived
IO model.

relaxation, only part of the bending-stretching coupling
would fall into the system potential (hence generate “spu-
rious” contributions to JC(ω)) since the in-plane motion
of the C atom and its coupling with the lattice are not
included in our modeling and their contribution should
be better considered as “physical”. Fortunately, in this
work we are mainly interested in the sticking dynamics
and for this process the high frequency region of JC(ω)
is irrelevant (see paper II). A simple extension of the IO
model with an exponential coupling based on the proper-
ties of the “true” bath only (i.e. on the SD at frequencies
smaller than ωD) has been discussed in Ref. 40. It only
requires an additional length scale α−1 for the interac-
tion that can be obtained, at least in principle, from the
knowledge of the full potential once the transformation
to effective modes41–44,55 has been performed, namely
through

α = − 1

3D̄0

∂3Vat
∂2X̄1∂zC

where X̄1 is the first effective mode and D̄0 its coupling
strength to zC . Such exponential coupling model seems
to be most appropriate in typical situations where vibra-
tional relaxation occurs, i.e. as a consequence of a close
contact between the vibrator and its environment.

In closing this Section we show that JC(ω) computed
at the lowest temperature considered (T = 5 K) is con-
sistent with the correlation functions C̃H(ω) we started
from, irrespective of the temperature. To this end, we set
up a classical IO Hamiltonian of Eq. (3) and performed
molecular dynamics simulations to compute CIOH (ω) (see
Table III for details). We employed 300 bath oscillators,
evenly arranged in frequency up to 1000 cm−1 in order
to include only the low frequency region. The results of
these test calculations are reported in Fig. 7 and show
a remarkable agreement with respect to the position of
the peaks, with only minor differences in the heights of
the low-frequency peaks which are very sensitive to the
long time behavior of the dynamics and, thus, to the
discretization of the bath and the time truncation. The
agreement is very good in the low frequency region of the
spectrum but remarkable in the high frequency region,
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Figure 7. Temperature scaled position autocorrelation func-
tion of the hydrogen atom CH(ω)T−1 as computed with the
lattice model (thin lines) and the derived IO model (thick
line), at three different temperatures T = 5 K, 100 K and 300
K. The IO model used the T= 5 K spectral density JC(ω)
shown in Fig. 3, truncated at ωD = 1000 cm−1.

too. This strongly supports the idea that the broaden-
ing of the 2500 cm−1 peak mainly comes from the anhar-
monic shape of the system potential, which is transferred
unaltered in the IO model. Additionally, these results
clearly show that the harmonic bath of the IO model is
well suited to capture all the relevant properties of the
stochastic force exerted by the graphene lattice, at least
in the low energy regime which is most relevant for our
purposes.

B. Vibrational relaxation

As a first quantum test of our IO model, we studied
the vibrational relaxation dynamics of the C-H bond fol-
lowing the evolution of an initial state where system was
prepared in an eigenstate of the 4D potential and al-
lowed to relax because of the interaction with the bath
(initially in its ground-state, to mimic a T = 0 K sit-
uation). This can be considered a preliminary study of
the sticking problem that is addressed in paper II and
that represents the limiting case where the initial “vibra-
tional” eigenstate of the system is picked up from the
continuum. Vibrational eigenstates of the 4D potential
were obtained by exact (Lanczos) diagonalization, as im-
plemented in Heidelberg’s MCTDH package. Computed
eigenvalues are collected in Table IV, labeled by the rel-
evant quantum numbers: νs,CH for the C-H stretching,
νs,surf for the surface stretching and νb for the C-H bend-
ing. Stretching and bending quantum numbers were as-
signed by comparison with the expected harmonic spec-
trum, after taking into account the strong anharmonicity
of the C-H stretching. The anharmonicity is evident al-
ready from the position of the νs,CH = 1 state, that has
an excitation energy of only 2257 cm−1, i.e. much lower
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E / cm−1 νs,surf νs,CH νb

0 0.00 0 0 0
1 460.87 (468.95) 1 0 0
2 920.11 (937.75) 2 0 0
3 1183.26 0 0 1
4 1378.14 (1406.37) 3 0 0
5 1638.82 1 0 1
6 1835.29 (1874.77) 4 0 0
7 2091.24 2 0 1
8 2199.00 (2257.39) 0 1 0
9 2291.86 (2342.95) 5 0 0
10 2371.74 0 0 2

Table IV. Low energy bound states of the 4D full potential of
the C-H system. Values in parentheses refer to the potential
constrained to the collinear configuration (2D).

than the value of the frequency we found at the bottom
of the potential well (2549 cm−1).

Similar to the classical IO case considered above,
the independent oscillator Hamiltonian employed for the
quantum simulations used the spectral density JC(ω)
computed at 5 K in order to minimize the appearance
of anharmonic effects of the system in the bath. In con-
trast with the molecular dynamics simulations, though,
we also made use of the high frequency region of JC(ω)
and thus included in our modeling a relaxation mech-
anism for the C-H stretching that would be otherwise
absent (at least with the model potential adopted in this
work). Thus, simulations of the relaxation dynamics of
the stretching mode are just representative of what one
can expect when a similar JC(ω) is used as a surrogate of
a more complicated system-environment coupling. Even
though this relaxation incidentally turns out to occur on
the right time scale the coupling encoded in JC(ω) at
these frequencies has little physical meaning and more
than likely reflects artifacts of the MD approach (for a
thorough investigation on this point, we refer to Ref. 40).

Quantum dynamical calculations were performed us-
ing the MCTDH method, as described in Section IV,
using three different bath discretization schemes: a low
frequency model suited for relaxation of low-frequency
modes (model I, with ω ∈ [0, 900] cm−1), a high-
frequency one optimized for the relaxation of the stretch-
ing mode (model II, ω ∈ [2100, 2900] cm−1) and a com-
bination of both (model III) to investigate combined ex-
citation of different modes. Different frequency spacings
were adopted in each case, and the resulting recurrence
times trec turned out be 1853, 3127 and 1471 fs, respec-
tively. Fig. 8 shows the time evolution of the system
energy in the 2D collinear and full 4D cases, for the first
excited states of the system potential. This energy is de-
fined as the expectation value of the system Hamiltonian
plus half the value of the interaction energy in order to
account for the energy that at any time is in the cou-
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Figure 8. Vibrational relaxation of the C-H excited state.
Time evolution of the system energy (as defined in the text)
from different initial vibrational states, for the 2D collinear
case (top panel) and for the full 4D case (bottom panel). Pan-
els on left give the vibrational energy spectrum of the system
and quantum labels for the 2D ((νs,surf , νs,CH)) and the 4D
((νs,surf , νs,CH , νb)) cases (top and bottom panels, respec-
tively). The dashed lines mark the recurrence time trec of the
bath models adopted (trec = 1853, 3127 and 1471 fs for model
baths I,II and III, respectively, see text for details).

pling term; the adopted splitting of the total energy can
be justified with the help of the virial theorem56. As il-
lustrated in Fig. 8, relaxation from the surface stretching
proceeds over a very short time scale, and is complete in
a few tens of fs. On such a small time-scale excitation
of the bath involves a rather large range of frequencies
around the resonant one (ω ≈ 460 cm−1), as illustrated
in Fig. 9 (top panel), which shows the average occu-
pation number of the bath oscillators during the νs,surf
= 1 relaxation dynamics. Notwithstanding the fast re-
laxation dynamics, the energy decays reported in Fig.
8 show essentially a Markovian behavior, except for the
slippage at short times which extends for a considerable
fraction of the relaxation window. This feature is re-
lated to the prepared initial states and to the switching
on of the coupling term, which actually causes a slight
increase of the system energy. The opposite behavior is
seen in the relaxation of the C-H stretching mode, that
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Figure 9. Time evolution of the average excitation number of
the bath oscillators during relaxation of the νs,surf = 1 state
(top panel) and the νs,CH = 1 state (bottom panel) of the
system potential. Along with the bath excitation, the energy
of the system is shown.

takes place over a picosecond scale and seems to be com-
plete on a time scale much larger than the 3.0 ps limit
imposed by the recurrence time of our bath discretiza-
tion. In this weak coupling limit, energy is exchanged
with quasi-resonant bath oscillators only, as is evident
from Fig. 9 (bottom panel) which shows the average
occupation number for the stretching mode relaxation.
Notice that the quasi-resonant frequencies do not cor-
respond to the spurious 2500 cm−1 peak of the JC(ω)
spectral density since the first excited state of the C-H

stretching mode has a considerably lower excitation fre-
quency (2257 cm−1) because of the strong anharmonicity
of the system potential. Hence, the resulting relaxation
rate (τ ∼ 5.0 ps) is determined by the background only,
whose origin is not as clear as that of the main peak. Its
magnitude is incidentally close to the result obtained by
Sakong and Kratzer48, who applied perturbation theory
from first principles and found τ = 5.2 ps.

Finally, we further compared the full dynamical model
with the reduced-dimensional 2D collinear one in the
relaxation dynamics, and found that relaxation of the
stretching modes are hardly affected by the inclusion of
the additional coordinates (compare top and bottom of
Fig. 8). This finding agrees well with the features of our
system potential, namely the lack of coupling between ρ
and the heights of the C and H atoms above the surface,
for configurations close to linearity.

VI. CONCLUSIONS

We have presented a system bath model that captures
the essential physics of a hydrogen atom chemisorbed
on graphene, and is ideally suited for high-dimensional
wavepacket investigations of its quantum dynamics. The
system comprises the hydrogen atom and the height of
the carbon atom involved in bonding, and is described
by a 4D potential energy surface based on density func-
tional theory data. The interaction with the rest of the
lattice, as subsumed in the spectral density of the envi-
ronmental couplings felt by the carbon atom, has been
obtained by inverting classical information about the hy-
drogen atom dynamics, with the help of a “source” po-
tential previously developed by one of the present au-
thors. The proposed approach though is rather general
and easily accommodates improvements in the system
potential and/or in the HC-lattice coupling, and work is
already in progress to apply ab initio molecular dynam-
ics for obtaining a Hamiltonian model from first princi-
ples only. The inversion procedure which led us to the
working system-bath model has been described in detail
and thoroughly checked. As an example of application to
dynamical problems, the resulting independent oscillator
model has been used to investigate the quantum dynam-
ics of vibrational relaxation at T = 0 K with the help of
the multi-configuration time-dependent Hartree method.
A related paper extends this study to the sticking dy-
namics.
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