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Abstract

We extend our recent quantum dynamical study of the exciton dissociation and charge
transfer at an oligothiophene-fullerene heterojunction interface (H. Tamura, R. Martinazzo,
M. Ruckenbauer, and I. Burghardt, J. Chem. Phys. 137 (2012) 22A540) by investigating
the process using the non-perturbative hierarchical equations of motion (HEOM) approach.
Based upon an effective mode reconstruction of the spectral density the effect of temper-
ature on the charge transfer is studied using reduced density matrices. It was found that
the temperature had little effect on the charge transfer and a coherent dynamics persists
over the first few tens of femtoseconds, indicating that the primary charge transfer step
proceeds by an activationless pathway.

Keywords: Organic photovoltaics, non-Markovian, HEOM, spectral density, exciton
dynamics

1. Introduction

The key processes involved in charge and energy transfer in organic photovoltaics occur
over various timescales. Upon generation of a Frenkel exciton (the XT state) following
absorption of light in the organic photovoltaic material the exciton diffuses to the organic
heterojunction interface to form a localised charge transfer (CT) state [1, 2]. The diffusion
lengths are typically 10-20 nm and the timescale for the exciton diffusion is typically 1 ps
to 1 ns. In so-called bulk heterojunction (BHJ) architectures [3], a significant portion of
excitons are generated at or close to the heterojunction interface, and the exciton generation
and dissociation is then an ultrafast femtosecond process - this is the scenario addressed in

∗Corresponding author
Email address: keith.hughes@bangor.ac.uk (Keith H. Hughes)

Preprint submitted to Chemical Physics April 25, 2014

*Manuscript
Click here to view linked References

http://ees.elsevier.com/chemphys/viewRCResults.aspx?pdf=1&docID=9564&rev=1&fileID=240776&msid={6751DB4B-B4AF-4718-BA59-3DF0236F3ECA}


this work. At the interface the CT state is formed on an ultrafast timescale of around 50 -
200 fs. The CT state is then delocalised as the electron is transferred into the material with
highest electron affinity (acceptor) and the hole is transferred to the material with lowest
ionisation potential (donor). The electron and hole can then transfer to the electrodes
over a nanosecond to microsecond timescale. The charge and energy transfer is strongly
influenced by electron-phonon coupling [2, 4, 5, 6].

Currently, the best performing polymer solar cells use donor/acceptor blends with
thiophene based donor polymers and fullerene acceptor species. Power conversion effi-
ciencies of up to 10% were very recently achieved with PTB7:PC70BM junctions [9], while
the paradigm heterojunction material P3HT:PCBM (poly(3-hexylthiophene): [6,6]-phenyl-
C61-butyric acid methyl ester) yields approximately 5%. Although this percentage is rela-
tively low in comparison to inorganic solar cells, which have a power conversion efficiency of
around 22%, organic photovoltaics have the advantage of low production costs and physical
flexibility of the material, as well as superior low-light and high-temperature performance.

Following Refs. [5, 6], the oligothiophene OT4 (donor) and fullerene C60 complex de-
picted in Fig. 1 is used in this work as a model to describe a fragment of the P3HT:PCBM
interface. The model is relevant to describe the P3HT:PCBM heterojunction because the
alkyl chains of the P3HT have a very low impact on the π molecular orbitals which are
relevant to describe the exciton dissociation. A key difference between OT4 and P3HT
is that the longer π conjugation length for P3HT lowers the exciton energy. For C60 and
PCBM an important difference in their electronic structure is that the LUMO of C60 is
triply degenerate but the degeneracy is broken in PCBM due to symmetry loss [10]. How-
ever, these differences have a very low impact on the charge transfer efficiency. Other
key aspects, like the aggregation of P3HT and PCBM in regioregular structures [11] that
strongly influences the nature of the primary excitations and the CT state, are disregarded
in the present work (see, however, Ref. [12] for a more complete treatment).

The key focus of this work is the study of the dynamics of the XT to CT transfer in the
OT4:C60 complex that occurs on the femtosecond timescale. For this system the diabatic
coupling is comparatively strong [5] and the charge transfer dynamics is ultrafast such
that the XT population dynamics cannot be approximated by Marcus theory and requires
a more explicit treatment of the dynamics. In Refs. [5, 6] the XT population dynamics
were computed explicitly by numerical solution of the time-dependent Schrödinger equa-
tion using the multiconfiguration time-dependent Hartree (MCTDH) method [14, 15, 16]
(Heidelberg MCTDH package [17]). Their simulations involved sampling a discrete set of
frequencies for the OT4 and C60 modes that were taken in their ground vibrational states
which related to a temperature T = 0 K simulation for the bath.

In the oligothiophene-fullerene complex the reorganisation energy λ is quite small and
the XT→CT transfer is a nearly activationless process occurring in the Marcus inverted
region, and is expected to be temperature independent. Furthermore, the experimental
observations of Asbury et al. [7, 8, 4] indicate that the process is temperature indepen-
dent. However, one might expect that the ensuing charge separation could show some
temperature dependence due to the Coulomb barrier to electron-hole separation. Experi-
mentally, several experimental studies point to negligible temperature effects [7, 19] while
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Figure 1: Structural (top) and energetic (bottom) representation of the oligothiophene OT4 fullerene C60

complex in the XT state on the left, and the OT+
4 :C+

60 complex in the CT state on the right. The LUMO
orbitals of the OT4 and C60 moieties are also illustrated.

some investigations have provided evidence for a temperature dependence in experimen-
tally observed photocurrents [18]. Recent experiments and quantum dynamical simulations
suggest that a combination of charge delocalisation and vibronic excess energy entail an
ultrafast, temperature independent formation of charge separated states [12, 13].

To investigate any temperature dependency of the primary exciton dissociation step, the
XT population dynamics in this work are computed explicitly using reduced density ma-
trix methods which allows simulations to be made at different temperatures. The approach
adopted is the non-perturbative hierarchical equations of motion approach [20, 21, 22, 23]
(HEOM). In a reduced density matrix approach the Hamiltonian is partitioned into a sys-
tem and bath part, and a coupling between the system-bath which is characterised by the
spectral density J0(ω). The spectral density can be obtained experimentally [24], by molec-
ular dynamics simulation, or from geometry-dependent electronic structure calculations,
as is the case in the present work [5]. Phenomenological spectral densities such as the
Ohmic form J0(ω) = ηω are widely used due to their simple form. However, the spectral
density is often highly structured and cannot be represented by a simple phenomenolog-
ical form. Complicated and highly structured spectral densities are prevalent in many
biological processes and play an important role in the dynamics of such processes [25].

In Refs. [26, 27, 28, 29, 30] it was shown that an effective mode representation of
the spectral density captures the essential features of highly structured spectral densities.
The effective spectral densities are based on the construction of effective modes of the
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environment. The resulting effective spectral density takes the form of the imaginary
part of a continued fraction but the corresponding bath correlation function is a series of
exponential terms which is conveniently in the correct form required for the HEOM. We
recently explored the use of effective-mode correlation functions in a second-order non-
Markovian setting [36] using time local (TL) and time non-local (TNL) master equations.
The present work extends this study to a systematic non-perturbative treatment.

The remainder of the paper is organised as follows. We first describe the Hamiltonian
for the oligothiophene-fullerene heterojunction (Sec. 2) and then formulate the construction
of the effective mode representation of the spectral density and bath correlation function
in Sec. 3. Sec. 4 summarises the HEOM approach. Results are presented in Sec. 5, and
finally, Sec. 6 concludes.

2. Oligothiophene-Fullerene Heterojunction Hamiltonian

The total Hamiltonian of the XT to CT transfer in the OT4:C60 complex is given by
[6]

Ĥ = ĤS + ĤSB + ĤB (1)

which consists of a two-level system coupled to a bath of harmonic oscillators,

ĤB =
∑
j

1

2
(p̂2
j + ω2

j x̂
2
j) (2)

where p̂j and x̂j are the momenta and position of the jth bath harmonic oscillator with
frequency ωj and mass-weighted coordinates are used throughout. The two-level system
part consists of the charge transfer state and the exciton state, and is given by

ĤS = −∆XT−CT|CT〉〈CT|+ γ(|XT〉〈CT|+ |CT〉〈XT|) (3)

where ∆XT−CT = 0.00290 a.u. is the XT to CT electronic energy gap and the diabatic
coupling γ = 0.00478 a.u. was evaluated at a distance of 3.0 Å between the donor and
acceptor. In Refs. [5, 6], a dependency of the coupling on the inter-fragment distance was
taken into account that is neglected in the present treatment.

The system-bath coupling is given by

ĤSB = |CT〉〈CT|
∑
j

cjx̂j (4)

where the coupling coefficients cj are related to the spectral density

J0(ω) =
π

2

∑
j

c2
j

ωj
δ(ω − ωj) (5)
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In this work the spectral density is constructed from a continuous representation of a
discrete, normal-mode based distribution of the electron-phonon couplings, as described
in Ref. [6]. In addition, the OT4:C60 inter-fragment coordinate is incorporated into the
bath spectral density, while in Ref. [6] this coordinate was treated explicitly as part of the
quantum subsystem.

Briefly, the procedure for obtaining a continuous form of the spectral density involved
generating a Lorentzian broadening of N0 = 265 discrete points (from the normal modes
plus inter-fragment coordinate) as follows,

J0(ω) =
π

2

N0∑
j=1

c2
j

ωj
δ(ω − ωj)

' π

2

N0∑
j=1

c2
j

πωj

∆ω

(ω − ωj)2 + (∆ω)2
(6)

where ∆ is the the root-mean-square of the frequency spacing of the discrete distribution
of the electron-phonon couplings.

The continuous form of the spectral density yields a more realistic representation of a
dissipative environment. As detailed in the next section, this continuous spectral density
will be subsequently used to map the dissipative system into a complementary Hamiltonian
representation that is particularly suited to obtain a reduced-dimensional non-Markovian
dynamics. This representation is related to an effective-mode description of the bath
[26, 27, 28, 29, 30, 31, 32, 33, 34], as further detailed below.

3. Effective Mode Representation and Rational Approximants to the Spectral
Density

The spectral density J0(ω) as obtained above is generally highly structured, such that
approximations are necessary. Among various possible approximation schemes, we focus in
the following on a rational approximation of the spectral density (Sec. 3.2) which naturally
leads to open-system, non-Markovian models that can be solved with the Hierarchical
Equation of Motion (HEOM) approach (Sec. 4). The rational approximation is derived
from an effective mode construction (Sec. 3.1) of the system-bath Hamiltonian that yields
a Hamiltonian model with an infinite but countable bath degrees of freedom. Such an
effective mode representation naturally leads to controlled approximations to the bath
response at short times, which can be made exact for increasingly longer time-scales by
increasing the number of modes introduced.

3.1. Effective-mode transformation and residual spectral densities

The abovementioned effective mode transformation of the system-bath Hamiltonian
involves a coordinate transformation of the Hamiltonian that leaves the system part un-
affected. The first step of the transformation is to subsume the complete system-bath
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interaction into a single effective mode X̂1 [26, 28, 34] (see also earlier works [39, 41]),

ĤSB = |CT〉〈CT|
∑
j

cjx̂j = |CT〉〈CT|D0,1X̂1 (7)

where

X̂1 =

∑
j cjx̂j

D0,1

=

∑
j cjx̂j

(
∑

j c
2
j)

1/2
(8)

In this form the short-time dynamics is accounted for entirely by the system and effective
mode only. For longer time-scales the residual bath modes need to be included in the
dynamics. The residual bath modes X̂2 . . . X̂NB

can be constructed in a number of ways
provided they are orthogonal [26, 33, 35].

If the initial spectral density J0(ω) of Eq. (6) is a smooth, continuous function repre-
senting a truly dissipative system, the coupling D0,1 and the effective mode frequency Ω1

are extracted from J0(ω) in terms of frequency moments of J0(ω) [29],

D2
0,1 =

2

π

∫ ∞
0

ωJ0(ω)dω (9)

Ω2
1 =

2

D2
0,1π

∫ ∞
0

ω3J0(ω)dω (10)

This procedure implicitly defines a residual spectral density J1(ω) describing the cou-
pling of the X1 mode to the residual bath [29, 30]. For J1(ω), the above construction
scheme can be reiterated such as to extract a second effective mode X2 that is in turn cou-
pled to a residual spectral density J2(ω). In general, the n+ 1-th effective mode frequency
Ωn+1 and coupling Dn,n+1 are evaluated as in Eqs. (9) and (10) using the n-th residual
spectral density Jn(ω) characterizing the bath.

This provides a general recipe for computing the effective mode parameters entering in
the resulting semi-infinite linear chain representation of the bath,

ĤB =
∞∑
n=1

1

2
(P̂ 2

n + Ω2
nX̂

2
n) +

∞∑
n=1

Dn,n+1X̂nX̂n+1. (11)

An alternative route to obtaining the tridiagonal form Eq. (11) involves an orthogonal
coordinate transformation [26, 27, 31, 32, 33, 35]. In the limit of an infinite number of
bath modes, the combination of Eq. (7) and Eq. (11) for HSB + HB is strictly equivalent
to the original form of the Hamiltonian of Eq. (2) and Eq. (4). The tridiagonal chain form
of Eq. (11) has been referred to as hierarchical electron-phonon (HEP) model [31, 32].

The n-th residual spectral density Jn(ω) is the limiting imaginary part of a generating
(propagator) function Wn(z) [29],

Jn(ω) = Im lim
ε→0+

Wn(ω + iε) (12)
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which satisfies a simple recursion [29]

Wn(z) = Ω2
n − z2 −

D2
n−1,n

Wn−1(z)
(13)

to be started with

W0(z) =
1

π

∫ +∞

−∞

J0(ω)

z − ω
dω

It was shown [29] that, under quite general conditions, the recurrence converges to a
quasi-Ohmic (Rubin [37]) spectral density.

3.2. Rational approximants of the spectral density

In view of the above, the original spectral density J0(ω) can be re-written to make
explicit its dependence on the first M effective mode parameters, namely [26, 29, 39]

J0(ω) = Im lim
ε→0+

W0(ω + iε) (14)

with the continued-fraction form [26, 29]

W0(z) =
D2

0,1

Ω2
1 − z2 −

D2
1,2

Ω2
2 − z2 − · · ·

D2
M−1,M

Ω2
M − z2 −WM(z)

as follows readily upon solving the recurrence in Eq.(13) for Wn−1(z) in terms of Wn(z).
Thus, replacing WM(z) with an effective closing function I(z) one obtains an Mth order

approximant that makes use of the first M effective mode parameters [26, 27]. Of particular
interest, in conjuction with the HEOM approach to be discussed below, is the Markovian
(Ohmic) closure I(z) = iηz (where η is a friction coefficient) which generates an M − th
order rational approximant of the spectral density, that is J

(M)
eff (ω) = Im limε→0+ W

(M)
eff (ω+

iε) where

W
(M)
eff (z) =

D2
0,1

Ω2
1 − z2 −

D2
1,2

Ω2
2 − z2 − · · ·

D2
M−1,M

Ω2
M − z2 + iηz The 

resulting M − th order effective spectral density can also be written as

J
(M)
eff (ω) = ηω

ΠM
n=1D

2
n−1,n

A(M)(ω)A(M)∗(ω)
(15)
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where A(M)(ω) is a polynomial of order 2M in the frequency ω which follows from the
recursion

A(1)(ω) = Ω2
M − ω2 + iηω

A(2)(ω) = (Ω2
M−1 − ω2)A(1)(ω)−D2

M−1,M

A(3)(ω) = (Ω2
M−2 − ω2)A(2)(ω)−D2

M−2,M−1A
(1)(ω)

. . . . . . . . . . . .

A(M)(ω) = (Ω2
1 − ω2)A(M−1)(ω)−D2

1,2A
(M−2)(ω)

(16)

Such Mth order approximations progressively capture the details of realistic, highly struc-
tured spectral densites and thus describe bath memory effects on increasingly longer time
scales. More precisely, when the closure is implemented at the Mth level the memory
kernel is reproduced correctly up to the (4M + 1)th order in time [30].

3.3. Bath Correlation Function

The second-order bath correlation function CB(t),

CB(t) = D2
0,1Tr

{
X̂1(0)X̂1(t)ρ̂eq

B

}
(17)

is related to the spectral density as follows [36, 38, 39, 40],

CB(t) =
1

π

∫ ∞
0

dωJ0(ω)[coth (βω/2) cos (ωt)− i sin (ωt)] (18)

where β = (kBT )−1, kB is Boltzmann’s constant and T is the temperature of the bath. The
integral of Eq. (18) is usually solved by contour integration after substituting the expansion
of the hyperbolic cotangent function in terms of Matsubara frequencies νl = 2πl/β

coth (βω/2) =
2

β

( 1

ω
+ 2

l=∞∑
l=1

ω

ω2 + ν2
l

)
(19)

The summation in Eq. (19) is only infinite for T = 0 K but converges at some finite value
nmat for non-zero temperatures.

The approximate bath correlation function obtained from Eq. (18) using the Mth-order
effective spectral density defined in Eq. (15) is given by [36]

C
(M)
B (t) =

nexp∑
l=1

gl exp(hlt)− i
2M∑
l=1

fl exp(hlt) (20)

where nexp = 2M + nmat is the total number of exponential terms in C
(M)
B (t) - there are

nmat terms arising from the poles of the Matsubara summation and 2M terms arising from
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the effective modes. In Eq. (20) hl are the poles in the lower part of the complex plane for
z = ω + iε

hl = −ipl l ≤ 2M

= −νl l > 2M (21)

The poles pl can be found by solving A(M)(z) = 0. The coefficients in Eq. (20) are given
by,

fl = ηΠM
n=1D

2
n−1,n

pl
Πi 6=l(pi − pl)

, (22)

and for l ≤ 2M

gl = −iηΠM
n=1D

2
n−1,n

pl
Πi 6=l(pi − pl)

coth
(β

2
pl

)
, (23)

otherwise

gl = − 2

β
ηΠM

n=1D
2
n−1,n

νl

B
(M)
n B

(M)†
n

, (24)

where B
(k)
n is a real function with the following recursion

B(1)
n = Ω2

M + ν2
n + ηνn

B(2)
n = (Ω2

M−1 + ν2
n)B(1)

n −D2
M−1,M

B(3)
n = (Ω2

M−2 + ν2
n)B(2)

n −D2
M−2,M−1B

(1)
n

. . . . . . . . . . . .

B(M)
n = (Ω2

1 + ν2
n)B(M−1)

n −D2
1,2B

(M−2)
n (25)

and

B(1)†
n = Ω2

M + ν2
n − ηνn

B(2)†
n = (Ω2

M−1 + ν2
n)B(1)†

n −D2
M−1,M

B(3)†
n = (Ω2

M−2 + ν2
n)B(2)†

n −D2
M−2,M−1B

(1)†
n

. . . . . . . . . . . .

B(M)†
n = (Ω2

1 + ν2
n)B(M−1)†

n −D2
1,2B

(M−2)†
n (26)

Once the poles have been determined, the correlation function C
(M)
B can be constructed

from Eq. (20). This generalizes the procedure of Ref. [36] where analytical expressions
were obtained for some low-order effective-mode correlation functions.
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4. Quantum Dynamical Equations

To study the dynamics of the exciton dissociation the hierarchical equations of motion
(HEOM) approach [20, 21, 22, 23, 41] is used in conjunction with M -th order effective-
mode correlation functions as defined above. The HEOM, which can be derived from a path
integral representation [20, 21, 22] or from the stochastic Liouville equation approach [23,
41], is a non-perturbative approach to system-bath quantum dynamics and can be used
for systems that are strongly coupled to a thermal bath. The HEOM approach has been
applied to processes such as proton transfer [42, 43], electron transfer [44, 45, 46, 47] and
excitation energy transfer in light harvesting complexes [48, 49, 50, 51].

As the name suggests the HEOM involve a hierarchy of equations for auxiliary density
operators (ADOs) associated with different levels of the hierarchy, where each level displays
coupling to the next higher and lower levels of the hierarchy. The HEOM can be expressed
as

∂ρ̂n
∂t

= (−i ˆ̂LS +

nexp∑
k=1

nkhk)ρ̂n − i
nexp∑
k=1

[Ĥop, ρ̂n+ ]

−i
nexp∑
k=1

gknk[Ĥop, ρ̂n− ]−
2M∑
k=1

fknk[Ĥop, ρ̂n− ]+ (27)

ˆ
where Ĥop = |CT〉〈CT| represents the system component of ĤSB and L̂S = [ĤS , •]. The
influence of the bath is manifest in the bath correlation function coefficients fk, gk, hk as
defined in Eq. (20). For a given hierarchy level n the term n is shorthand notation for the
nexp digit non-negative integer index of the ADOs, where each index labels an exponential
term in the summation of Eq. (20). For example, if nexp = 3 there are nexp ADOs at the n = 1
hierarchy level labelled ρˆ100, ρˆ010 and ρˆ001. At n = 0, ρ0 is the reduced system density

operator and here is a 2 × 2 matrix associated with the CT and XT electronic states.
The terms n+ and n− correspond to hierarchy upcoupling to level n + 1 and downcou-

pling to n− 1 respectively. In terms of the ntot digit index of the ADOs only ADOs that
raises (lowers) each of the indices by +1(-1) contribute to the upcoupling (downcoupling).
For example, at the n = 1 hierarchy level the ADO ρ̂010 will upcouple to ρ̂110, ρ̂020 and ρ̂011

and can downcouple only to ρ̂000 which is the reduced system density matrix.
The terms nk in Eq. (27) are non-negative integers equal to the indeces of the ADO

concerned.
The HEOM hierarchy defined in Eq. (27) is infinite and has to be truncated at some

level. The number of ADOs associated with a given hierarchy level is given by (nexp +
n)!/[n!(nexp− 1)!], where n is the hierarchy level. To be of any numerical use the hierarchy
truncation level should not be too high. Commonly used truncation schemes involve a
Markovian closure at the highest level nH , or setting all ADOs to zero for the nH + 1 level
- the so called time-nonlocal (TNL) closure. In this work the TNL closure was found to
be most stable.
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It should be emphasised that the hierarchy associated with the HEOM is distinct from
the effective mode hierarchy of Sec. 3. The present scheme therefore involves a dual
hierarchy of effective modes and HEOM levels.

5. Results and Discussion

The spectral density J0(ω) obtained from the electronic structure calculations of Ref. [6],
and constructed in continuous from as described in Sec. 2, is depicted in Fig. 2a). For the
effective mode deconvolution of J0(ω) a frequency cut-off of 5000 cm−1 was used in the 
iterative routine of Secs. 3.1-3.2 and full convergence to quasi-Ohmic form was obtained 
with 40 effective modes. The spectral density between the nth effective mode and the

residual bath, ie Jn(ω) is depicted in Fig. 2b) for various values of n. Although 40 effective 
modes are required for full convergence to quasi-Ohmic form this number is too high to

be used for generating the correlation function required for the HEOM approach and so
the closure to the effective mode chain needs to be implemented at a much lower level.

Fig. 2b) illustrates that Jn(ω) is sufficiently well converged by n = 5 − 6.
For the effective mode reconstruction of the spectral density using Eq. (15) the Ohmic 

friction term η was evaluated from a linear regression of the small frequency part of

JM+1(ω). The resulting reconstructed effective mode spectral density J(M)
eff (ω) for M = 4, 5

and 6 is depicted in Fig. 3 alongside J0(ω). Although J(M)
eff (ω) does not resemble J0(ω) the

effective mode spectral densities capture the essential physics of the environment’s collec-
tive response modes and, as demonstrated extensively in Ref. [30], reproduces the memory

kernel up to 4nth order in time. This is the key strength of the effective mode approach - 
that the system-bath dynamics is accurately reproduced as the length of the effective

mode chain increases, and this is illustrated in Fig. 4 which illustrates the bath correlation
functions associated with J0(ω) and J(M)(ω) for M = 4, 5 and 6. For the system quantum 
dynamics the influence of the bath correlation function is most dominant at early times

where the initial oscillatory decay of CB(t) occurs over the first 13 fs. The correlations at
longer times are important but not as dominant as early times. It is crucial therefore that

C
(M) 

B

(t) captures the early dynamics accurately. At the M = 4 level the first oscillation
is not captured. The M = 5 and M = 6 hierarchy levels captures very closely the first

oscillation decay of C(M)
B B(t); however, over longer timescales the deviation of C(M)

(t) from

CB(t) is more pronounced for C(6)
B (t) - C(5)

B (t) is closer to CB(t) beyond 25 fs. Increasing

the effective mode chain length beyond M = 6 has a drastic influence on the numerical
effort for simulating the system dynamics using the HEOM approach; consequently, the
effective mode hierarchy was implemented at the M = 5 level. The effective mode param-

eters for C(5)
B (t) are defined in Table 1 and were constructed using the procedure described

in Sec. 3.

B

The dynamical calculations illustrated here were carried out using the HEOM method
described in Sec. 4. The system-bath coupling was strong enough to necessitate a 10th level
hierarchy for the HEOM. At this high level the computations become numerically intensive
and with an effective mode closure at the M = 5 level, which gives rise to 10 exponential

terms in C(5)
(t), there are (nexp + n)!/[n!(nexp − 1)!] = 1847560 ADOs at the
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Ω1 Ω2 Ω3 Ω4 Ω5 η
0.0077 0.017 0.016 0.016 0.012 0.062
D01 D12 D23 D34 D45

5.82× 10−4 5.45× 10−4 1.42× 10−4 1.40× 10−4 1.32× 10−4

Table 1: Effective mode frequencies Ωi and coupling parameters Dij in mass weighted coordinates and
quoted in atomic units for an effective mode closure at the M = 5 level.

n = 10 level hierarchy for the HEOM – and this is without consideration of the Matsubara 
exponential terms.

We re-emphasise here that the hierarchy associated with the HEOM is distinct from
the effective mode hierarchy of Sec. 3. The HEOM truncation depends on the strength of the 

system-bath coupling. For the effective mode hierarchy the coupling between the final
effective mode in the chain with the bath may still be large. The effective mode inter-chain
couplings do not necessarily become progressively weaker along the chain – the convergence
criterion is that the spectral density felt by the final effective mode of the chain becomes
quasi-Ohmic. For the HEOM, however, the ADOs do become progressively smaller as the
hierarchy level increases, until eventually they become negligible.

Using the effective mode spectral density the HEOM is exceptionally challenging: each

effective mode incorporated into the spectral density gives rise to two exponential terms in
C

(M)
B (t), and for a high level HEOM truncation the number of ADOs becomes large. Conse-

quently, the number of Matsubara frequencies (each frequency contributes one exponential

term to C
(M)
B (t)) were limited to zero or five. At low temperatures the number of Matsubara

frequencies required for convergence is large. For low temperatures the Ishizuki-Tanimura
truncation [22] is applied to the Matsubara frequencies of the expansion of Eq. (20). The
Ishizuki-Tanimura truncation applies the Markov approximation νl exp(−νlt) ' δ(t) for
Matsubara frequencies where l > nmat, which results in inclusion of the term

ˆ̂LMarkov = −
∞∑

l=nexp+1

gl[Ĥop, [Ĥop, ρ̂n]] (28)

in Eq. (27).
As an initial condition the XT state was initially populated for the system density

matrix ρ̂XT,XT
0 (t = 0) = 1 and all ADOs set to zero ρ̂n>0(t = 0) = 0. The HEOM was

propagated using a 4th order Runge-Kutta time integrator for time steps of ∆t = 1 a.u..
The key result illustrated here is the exciton population and coherence decay at dif-

ferent temperatures. In Ref. [6] it was shown that the exciton population decayed rapidly
down to a population of 0.3 in less than 10 fs and then slowly equilibrated in an oscillatory
manner over 100 fs to a population of around 0.2. As detailed in Ref. [6] the initial exciton
population decay is mediated by the electronic coherence which then dephases due to the
coupling to the vibrations. However, the dynamics of Ref. [6] were computed using the
MCTDH wavepacket approach which relates to a T = 0 K simulation for the bath. In

12



0 2000 4000

ω /cm
-1

0

0.0001

0.0002

J n
(ω

)

n=2
n=3
n=4
n=5
n=6
n=40

0 1000 2000 3000 4000 5000
0

0.02

0.04

J 0
(ω

)

a)

b)

Figure 2: a) Spectral density J0(ω) and b) residual spectral densities Jn(ω) for n = 2− 6 and n = 40.
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Figure 4: Bath correlation functions evaluated from Eq. (20) for M = 4−6 effective modes. Also illustrated
is the ’exact’ form CB(t) evaluated using J0(ω).

Fig. 5 the exciton population and coherence decay obtained from the HEOM is illustrated
at various temperatures. Apart from differences in the amplitude of the periodicity of the
population/coherence dynamics the population/coherence decay is temperature indepen-
dent. This observation is supported experimentally by Asbury et al. [7, 8, 4].

Also shown for comparison in Fig. 5 is the population and coherence dynamics obtained 
from MCTDH wavepacket calculations. The MCTDH calculations used a discretized fre-
quency sampling of J0(ω) (see Ref. [6] for details) where apart from the discretization of the 
bath – which dictates the Poincar´e recurrence time – the calculations are taken as numeri-
cally exact at T = 0 K. As in Ref. [6], 60 explicit bath modes were used in the calculations, 
and the Poincar´e time was TP = 676 fs. Over 25 fs the dynamics in Fig. 5 computed from 
MCTDH and the HEOM approach are very similar and the population/coherence decay to 
roughly the same values. Beyond 25 fs, the MCTDH dynamics appears more irregular and 
more strongly damped, which may be a consequence of the numerically exact treatment. 
However, the agreement is very good overall, in clear contrast to an M < 5 approximation 
within the HEOM scheme.

6. Summary and Conclusion

The quantum dynamics of the ultrafast exciton dissociation at the oligothiophene-
fullerene heterojunction was studied, following up on earlier work of Refs. [5, 6]. The
electronic part of the system was treated as an open quantum system interacting with a
phonon bath. The interaction is described by a highly structured spectral density that is
strongly coupled to the electronic sub-system. Such a spectral density leads to a clearly non-
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Figure 5: Dynamics of a) Exciton population and b) coherence, at various temperatures.

Markovian dynamics for the exciton dissociation. In order to compute the non-Markovian 
dynamics of the exciton dissociation the spectral density was reconstructed in an effective 
mode representation, as described in Sec. 3, using five effective modes with Ohmic closure. 
The bath correlation function evaluated from the effective mode spectral density which 
consists of a summation of exponential terms, was then used to simulate the quantum 
dynamics using the HEOM approach as described in Sec. 4. In view of the comparatively 
strong system-bath coupling in the present system, the HEOM hierarchy had to be taken 
to the n =10th level. Thus, the second-order TL and TNL approach that we developed 
earlier [36] cannot be expected to work well.

In a recent publication [53] addressing the same molecular system, an approach was used 
by which the first effective mode was included explicitly in the system Hamiltonian, while 
the residual bath was treated at second-order perturbation theory. It was found that the 
approach favored small diabatic couplings that arise at OT4:C60 inter-fragment distance R 
≥ 3.5˚A. The second order treatment of the residual bath cannot be expected to work well 
in the R = 3.0 ˚A case considered here.

The key outcome of this work supports the experimental observation of Asbury et
al. [7, 8, 4] that the primary charge transfer step at a typical polymer-fullerene inter-
face is temperature independent. This confirms the analysis of Ref. [5] where wavepacket
simulations were carried out in conjunction with Monte Carlo sampling over a thermal
distribution.

However, one should emphasize that conclusions from the present work are limited
since our study is restricted to the primary charge separation step. The ensuing generation
of charge separated states and eventually free carriers, requires overcoming the electron-
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hole Coulomb attraction and may necessitate thermal activation [19, 52, 2]. As shown
in Ref. [12], though, the effective Coulomb barrier could be significantly lowered due to
charge delocalisation, facilitating an ultrafast charge separation. A future goal is therefore
to connect the present study to the sequence of follow-up processes, to complement the
wavepacket simulations of Ref. [12]. A key issue will concern the initial excess energy that
influences the charge separation processes and contributes to ultrafast charge separation
even in systems like P3HT:PCBM that exhibit low band offsets.
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