13,155 research outputs found

    The Free Energy of N=4 Super-Yang-Mills and the AdS/CFT Correspondence

    Get PDF
    We compute the high-temperature limit of the free energy for four-dimensional N=4 supersymmetric SU(N_c) Yang-Mills theory. At weak coupling we do so for a general ultrastatic background spacetime, and in the presence of slowly-varying background gauge fields. Using Maldacena's conjectured duality, we calculate the strong-coupling large-N_c expression for the special case that the three-space has constant curvature. We compare the two results paying particular attention to curvature corrections to the leading order expressions.Comment: 26 pages.Minor corrections to eqs.(19),(21). Results and conclusions unchanged. References adde

    Sculpting the Extra Dimensions: Inflation from Codimension-2 Brane Back-reaction

    Full text link
    We construct an inflationary model in 6D supergravity that is based on explicit time-dependent solutions to the full higher-dimensional field equations, back-reacting to the presence of a 4D inflaton rolling on a space-filling codimension-2 source brane. Fluxes in the bulk stabilize all moduli except the `breathing' modulus (that is generically present in higher-dimensional supergravities). Back-reaction to the inflaton roll causes the 4D Einstein-frame on-brane geometry to expand, a(t) ~ t^p, as well as exciting the breathing mode and causing the two off-brane dimensions to expand, r(t) ~ t^q. The model evades the general no-go theorems precluding 4D de Sitter solutions, since adjustments to the brane-localized inflaton potential allow the power p to be dialed to be arbitrarily large, with the 4D geometry becoming de Sitter in the limit p -> infinity (in which case q = 0). Slow-roll solutions give accelerated expansion with p large but finite, and q = 1/2. Because the extra dimensions expand during inflation, the present-day 6D gravity scale can be much smaller than it was when primordial fluctuations were generated - potentially allowing TeV gravity now to be consistent with the much higher gravity scale required at horizon-exit for observable primordial gravity waves. Because p >> q, the 4 on-brane dimensions expand more quickly than the 2 off-brane ones, providing a framework for understanding why the observed four dimensions are presently so much larger than the internal two. If uplifted to a 10D framework with 4 dimensions stabilized, the 6D evolution described here could describe how two of the six extra dimensions evolve to become much larger than the others, as a consequence of the enormous expansion of the 4 large dimensions we can see.Comment: 27 pages + appendices, 2 figure

    WHO and nutrition

    Get PDF

    Cosmology and Static Spherically Symmetric solutions in D-dimensional Scalar Tensor Theories: Some Novel Features

    Full text link
    We consider scalar tensor theories in D-dimensional spacetime, D \ge 4. They consist of metric and a non minimally coupled scalar field, with its non minimal coupling characterised by a function. The probes couple minimally to the metric only. We obtain vacuum solutions - both cosmological and static spherically symmetric ones - and study their properties. We find that, as seen by the probes, there is no singularity in the cosmological solutions for a class of functions which obey certain constraints. It turns out that for the same class of functions, there are static spherically symmetric solutions which exhibit novel properties: {\em e.g.} near the ``horizon'', the gravitational force as seen by the probe becomes repulsive.Comment: Revtex. 21 pages. Version 2: More references added. Version 3: Issues raised by the referee are addressed. Results unchanged. Title modified; a new subsection and more references added. Verison to appear in Physical Review

    Searching for the dual of the Maxwell-Chern-Simons model minimally coupled to dynamical U(1) charged matter

    Get PDF
    The possibility of dual equivalence between the self-dual and the Maxwell-Chern-Simons (MCS) models when the latter is coupled to dynamical, U(1) fermionic charged matter is examined. The proper coupling in the self-dual model is then disclosed using the iterative gauge embedding approach. We found that the self-dual potential needs to couple directly to the Chern-Kernel of the source in order to establish this equivalence besides the need for a self-interaction term to render the matter sector unchanged.Comment: 4 pages, RevTeX, new references, accepted for publication on Phys. Lett.
    • …
    corecore