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Abstract

The possibility of dual equivalence between the self-dual and the Maxwell–Chern–Simons (MCS) models when the
coupled to dynamical, U(1) fermionic charged matter is examined. The proper coupling in the self-dual model is then d
using the iterative gauge embedding approach. We found that the self-dual potential needs to couple directly to t
kernel of the source in order to establish this equivalence besides the need for a self-interaction term to render the ma
unchanged.
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This Letter deals with the concept of duality
three-dimensional models with Chern–Simons te
coupled to dynamical matter. The study of such m
els have provided deep insights in unrelated area
particle physics and condensed matter, both from
theoretical and phenomenological points of view[1].
Duality, on the other hand, is an useful concept
field theory and statistical mechanics since there
very few analytic tools available for studying no
perturbative properties of systems with many degr
of freedom. One can easily make some elemen
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observations that hint towards the importance of
duality in D = 3. In this regard we mention the hig
temperature asymptotic of four-dimensional field th
ory models and the understanding of the universal
havior of the Hall conductance in interacting electr
systems. In particular, this result has been of great
nificance in order to extend the bosonization progr
from two to three dimensions with important pheno
enological consequences[2].

Certain theories, among them gauge theories a
description in terms of different sets of potentials,
relation between these sets being called duality tra
formation. This transformation typically maps solito
to fundamental fields and can therefore translate a n
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perturbative problem to a solvable perturbative one
D = 4 Maxwell theory there are two different such d
scriptions in terms of distinct potential one-form b
the theories are identical. Dual theories may, howe
not be identical. The duality betweenD = 3 Maxwell
and free scalar field theory being a well-known e
ample. Still, they are both described by second-or
actions. Another well studied example inD = 3 is
the duality between Maxwell–Chern–Simons mo
(MCS) and the self-dual model (SD)[3] which is the
subject of this investigation. However, what is mo
stringent in this case is the fact that while the gau
invariant MCS model is a second-order theory for
potentials, the SD model is described by a first-or
theory, albeit for the field components. Such a featu
we will see, has striking consequences for the d
map when the models are coupled to external sou
and fields. It is worth of observation that to study th
duality also in the presence of sources is very imp
tant because physical observables are only obta
through measurements that critically depend on
couplings.

This Letter is devoted to study issues of dua
when the Maxwell–Chern–Simons model (MCS)
minimally coupled to dynamical fermionic source
Similar questions have been tackled before by c
sidering the self-dual model (SD) minimally coupl
to dynamical fermionic matter[4] and also in[5] for
bosonic matter as well. This result is well illustrat
by the following duality diagram

(1)

that shows the self-dual fieldf µ
SD coupled electrically

(EC) with the matter fields while the MCS fieldAµ
MCS

has a Pauli-type coupling (PC), as shown in[4,5].
These issues have been critically reviewed in[6]

who observe that due to the lack of gauge symm
in the SD model, more general couplings should be
lowed. However, the search for duality transformat
when the gauge-invariant MCS model is minima
coupled to the dynamical matter has remained an o
question. This situation, illustrated in the following d
agram

(2)

should therefore disclose theunknown coupling to the
SD fields leading to electrical (or minimal) couplin
in the gauge invariant side of the duality. Besides
intrinsic interest in order to establish the correct c
pling in the SD side of the duality, this study is al
important in order to define the functional genera
which is meaningful for the measurement quest
discussed above. Moreover, in order to complete
full program of duality with sources initiated in[4] it
is mandatory to disclose such couplings.

The difficulty in the resolution of this problem is a
follows. When the matter currents are minimally co
pled to fields in a first-order theory[4,5], such as the
SD model, they are mapped, through duality, to th
derivatives,Jµ → εµνλ∂νJλ, which, together with the
presence of Thirring-like term, guarantees the inv
ance of the matter dynamical content. The coup
induced in the MCS model then becomes the w
known Pauli term and represents an electric dip
interaction. However, when the opposite situation
considered, matter current minimally coupled to
second-order side of the duality, the problem see
to have a more complex status. In fact, the SD fi
is expected to couple to a sort ofinverse derivative
operator of the current.1 Such an object, known a
the Chern kernel of the source, although well defin
mathematically as

(3)Jµ = εµνρ∂νωρ,

lacks a significant physical meaning. With this defi
ition for the Chern kernelωµ, the current is automat
ically conserved but the Chern kernel is ambiguo
Indeed, the kernel transformation as

(4)ωµ → ωµ + ∂µχ

1 This operator is in fact the well-known Hopf operator and h
been brought in the context of quantum Hall effect in[17].
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leaves the current invariant. Geometrically the Ch
kernel is seem as the world-sheet of the Dirac string
tached to the charge. As so, the property(4) is directly
related to the unobservability of the Dirac string.

However, the kernel symmetry(4) seems to bring
another unexpected problem. Because of it the cou
SD model could acquire the status of a gauge the
We will see that a related feature in gauge theorie
the responsible for the solution of this difficulty. In fa
the MCS model needs gauge fixing. On the other ha
to solve(3) for the Chern kernel we need to give sen
for the inverse of the operatorεµνρ∂ν that is undefined
because of the presence of a zero-mode. A pos
regularization of the symmetry(4) is the following:

(5)ωµ =
[

1

εµνρ∂ν

]
reg

Jρ ≡ εµνρ∂ν

� Jρ,

that automatically satisfy

(6)∂µωµ = 0,

this way eliminating the ambiguity in the Chern ke
nel.

It is interesting at this juncture to relate the am
guity problem of the Chern kernelωµ in terms of the
currentJµ, just mentioned, with the gauge symme
displayed by the MCS model. This situation is in fa
deeply rooted to the existence of a duality betwe
these two models. To study duality in this context, d
ferent techniques have been developed since its o
inal postulation[7]. Recently we have proposed th
gauge embedding approach to deal with this questio
in the presence of sources[8]. This approach is also in
teresting since it naturally discloses a factorization
the propagator of the MCS model in terms of the pr
agators for the SD model and a pure Chern–Sim
model. This is a worthy way to understand the me
ing of this equivalence since the MCS theory giv
origin to second-order differential equations while t
SD model is a first-order theory. There is therefore
extra solution in the first that is lacking in the secon
Therefore, in a sense that will soon become clear,
extra solution in the MCS must be trivial. This is i
deed the meaning of the gauge symmetry presen
the former but not in the later.

In order to put the comments above in so
grounds, let us then quickly review the gauge emb
ding approach to duality, in the free case[8]. This also
serve a second purpose as a review of the techn
 .

To this end, let us write the SD model as

(7)LSD = 1

2
f µDSD

µν f ν,

where

(8)DSD
µν = [

RSD
µν

]−1 = m2ηµν − mεµνλ∂
λ

is the inverse propagator for the SD model. From
Euler vector of the SD model2

(9)Kµ = DSD
µν f ν = (

m2ηµν − mεµνλ∂
λ
)
f ν

we obtain the equations of motion as the kernel of
Euler vector,Kµ = 0.

The approach of[5,8] works by iteratively inducing
the required invariance into the original model throu
the remotion of the obstruction to gauge symme
which, after the elimination of some auxiliary field
gives the dual of the original non-invariant model a

∗L= LSD − 1

2m2
KµKµ

= 1

2
AµDµνA

ν − 1

2m2
AµD2

µνA
ν

= 1

2m
Aµ

[(
εµρλ∂λ

)
Dν

ρ

]
Aν

(10)= LMCS,

where we have relabeledfµ → Aµ to reflect the em-
bed gauge character of the new variable and ca
DSD

µν = Dµν to simplify the notation. From here w
observe that theDµνA

ν = 0, a solution of the SD
model, is a solution for the MCS model as well. Ho
ever, there is another solution in the form

(11)εµνλ∂
νAλ = 0,

which is pure gauge, that is not present in(7).
The propagatorRMCS

µν for the MCS model has
therefore been factorized as

RMCS
µν = [(

εµρλ∂λ

)
Dν

ρ

]−1

(12)=
[

1

εµρλ∂λ

]
RSD

ρν .

The propagating degrees of freedom of both theor
described byRSD

µν in (8), clearly coincide but the MCS
has a pure gauge freedom that is not manifest in

2 The Euler vectorsKµ, are defined by the independent variatio
of the action, whose kernel gives the equations of motion.



354 M.S. Guimarães et al. / Physics Letters B 625 (2005) 351–356

re
CS
t of
ani-
ge-

he
and

sed
ith
d to

the
del
y

he

ern

the

e-
.

a-
nt
red,
er-
ics
er,

the
ct.
lity

on
ca-
i-
sed
d
a
lf-
tor-
t of
The
ker-
fore

the

ns

e
he

-

l

SD, a well-known fact. What is of importance he
is that the gauge freedom manifests itself in the M
model through the pure Chern–Simons componen
the propagator which is the same as the one m
fest by the Chern kernel above. As mentioned, gau
fixing of the MCS model automatically regularizes t
zero-mode for the pure Chern–Simons operator
vice-versa,

(13)
[
RMCS

µν

]
g.f. =

[
1

εµρλ∂λ

]
reg

RSD
ρν .

We are now ready to consider the problem po
above. Our strategy will be as follows. Starting w
an ansatz action, representing the SD model couple
the Chern kernel of the electric current, we apply
gauge embedding program to obtain the MCS mo
with minimal coupling. This will complete the dualit
picture initiated in[5].

Let us then consider the following ansatz for t
Chern kernel coupling for the SD

(14)

L(e)
SD = m2

2

(
fµ − e

m
ωµ

)2

+ m

2
f µεµλν∂

λf ν +LD,

where

(15)LD = ψ̄(i/∂ − M)ψ,

describes the free Dirac field. The (regularized) Ch
kernelωµ is given in terms of the fermionic fields as

(16)ωµ = εµνρ∂ν

� ψ̄γ ρψ.

Following the embedding approach we compute
Euler vector

(17)Kµ = m2
(

fµ − e

m
ωµ

)
+ mεµλν∂

λf ν,

and write the dual model as (after the relabelfµ →
Aµ)

∗L(e) = L(e)
SD − 1

2m2
K2

µ

(18)

= −1

4
F 2

µν + m

2
Aµεµλν∂λAν + eAµJµ +LD,

which shows as claimed, the minimal coupling b
tween the MCS-fieldAµ and the fermionic source
It is noteworthy that this time the duality transform
tion did not induce any Thirring-like current–curre
interaction. However, a similar feature has appea
this time as a self-interacting term for the Chern k
nel albeit in the SD model. Still, the matter dynam
remains unchanged as will be next verified. Howev
before that, it is important to consider this result in
perspective of previous contributions to the subje
In [9], Rey and Zee have discussed the self-dua
of the MCS–Proca action including the contributi
of vortices and magnetic monopoles. The modifi
tion f µ → f µ − (e/m)ωµ used to consider the d
rect coupling with the Chern kernel has been u
in [9] to take account of topologically non-trivial fiel
configurations—vortices in 2+ 1 dimensions—and
factorization of the action into its self and anti-se
dual components was found. In contrast, the fac
ization found here display the self-dual componen
the MCS model and a pure Chern–Simons part.
non-local operator used here to define the Chern
nel in terms of the fermionic fields has appeared be
in [10] and [11] to discuss the SL(2,Z) symmetry
present in the MCS action. A discussion along
same lines is to be found in[12] and[13] together with
a study of the particle–vortex duality with applicatio
to quantum Hall effect.

To verify the invariance of the matter dynamics w
start computing the fermionic field equations in t
self-dual case. To this end let us rewrite(5) as

(19)ωµ(x) =
∫

d3y G(x − y)εµνρ∂(y)
ν Jρ(y),

where�(x)G(x − y) = δ(x − y). The equation of mo
tion for the fermionic field is

0= δSAD[ψ̄]
δψ̄(x)

= (
iγ µ∂µ − M

)
ψ(x)

(20)−
∫

d3y
(
ef µ(y) − e2ωµ(y)

)δωµ(y)

δψ̄(x)
,

where SSD[ψ̄] = ∫
d3yL(e)

SD. Taking the functiona
derivative of(19)we obtain

(i/∂ − M)ψ(x)

= me

∫
d3y G(x − y)

× εµνρ∂ν

[
f ρ(y) − e

ωρ(y)

]
γ µψ(x).
m
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Next, we get rid of the self-dual field, in favor of th
fermion fields, from its equations of motion,

(21)fµ = e

m
RSD

µνων,

and use that

(22)
1

m
ενσρ∂σ = ηνρ − 1

m2

[
RSD

νρ

]−1
,

to obtain

eεµνρ∂ν

(
f ρ − e

m
ωρ

)

= e2
(

mηµρ − 1

m
R−1

µρ

)
e

m
Rρσ ωσ − e2

m
Jµ

(23)= e2Rµσ ωσ − e2

m2
ωµ − e2

m
Jµ,

whereRµν = RSD
µν . Going back to the symbolic ma

tricial notation of(3), the purely fermionic dynamic
is given then as(
iγ µ∂µ − M

)
ψ

(24)= e2

�
[
mRµσ ωσ − ωµ

m
− Jµ

]
γ µψ.

Let us consider next the fermionic dynamics of t
MCS model described by(18). From there we obtain
the matter equations of motion as

(25)
(
iγ µ∂µ − M

)
ψ(x) = eAµγ µψ(x).

As before, to obtain the purely fermionic dynamic
we eliminate the gauge fieldAµ by solving the gauge
equations of motion

(26)εµνρ∂νAρ = e

m
RµνJν,

which, after gauge fixing (∂µAµ = 0), becomes

(27)Aµ = e

m

[
−εµνρ∂ν

�
(
Rρσ Jσ

)]
.

Substitution in(25) results in

(
iγ µ∂µ − M

)
ψ = e2

m

[
εµνρ∂ν

�
(
Rρσ Jσ

)]
γ µψ

= e2

�
[
mRµσ J σ − 1

m2
Jµ

]
γ µψ

(28)

= e2

�
[
mRµσ ωσ − ωµ

m
− Jµ

]
γ µψ,
which coincides with(24). This result gives an, a pos
teriori, proof of the ansatz(14) by leaving the fermi-
onic dynamics unaffected. As anticipated, the ma
behaves as expectator under duality.

In conclusion, in this Letter we resumed the stu
of the dual equivalence between the self-dual mo
[3] and the Maxwell–Chern–Simons theory[1] cou-
pled to dynamical fermionic matter, using the ite
tive gauge embedding procedure[8]. In the former
studies [4,5] where it was the SD model that a
peared coupled minimally to dynamical matter,
dual mapping into the MCS theory showed that,
it exchanges the minimal coupling into a non-minim
Pauli-type interaction and (ii) introduces a curren
current Thirring-like interaction to preserve the d
namics of the fermionic matter sector. In the pres
study we found that in order to have the gau
invariant MCS model minimally coupled to a co
served current the SD model needs to be coup
to the Chern kernel of the source. Besides, a s
interacting kernel–kernel term also becomes neces
to preserve the dynamics of the fermionic sector. T
results of the duality reported here are new and
fact, quite surprising. Although the presence of a c
pling of the SD field with a sort ofinverse derivative
of the current could be anticipated, the necessity
a quadratic Chern kernel piece to preserve the ma
dynamics was unexpected. As far as we know, s
a model and its properties have not been investig
before.

We finish with some worthy noticing observation
In this study we focused on the case of minimal c
pling of the source with the MCS, suggested by ga
invariance. Such an investigation seems importan
order that the observables of both theories could
compared. It is also important to obtain a better
derstanding of the connection between thedual inter-
actions, like the dipole and minimal, from one sid
and the meaning of the direct Chern kernel inter
tion, on the other side. It is very important to me
tion that the completion the full duality program w
dependent on this result. It is now possible to
dertake a study of the quantization of the param
ters involved in the models, e.g., charge and m
[14]. Finally, it is worth mentioning the possibilit
of extending this program to other dimensions a
to tensors of higher ranks completing the studies
[15,16].
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