303 research outputs found

    The Effective Potential, the Renormalisation Group and Vacuum Stability

    Get PDF
    We review the calculation of the the effective potential with particular emphasis on cases when the tree potential or the renormalisation-group-improved, radiatively corrected potential exhibits non-convex behaviour. We illustrate this in a simple Yukawa model which exhibits a novel kind of dimensional transmutation. We also review briefly earlier work on the Standard Model. We conclude that, despite some recent claims to the contrary, it can be possible to infer reliably that the tree vacuum does not represent the true ground state of the theory.Comment: 23 pages; 5 figures; v2 includes minor changes in text and additional reference

    Brane Interaction as the Origin of Inflation

    Full text link
    We reanalyze brane inflation with brane-brane interactions at an angle, which include the special case of brane-anti-brane interaction. If nature is described by a stringy realization of the brane world scenario today (with arbitrary compactification), and if some additional branes were present in the early universe, we find that an inflationary epoch is generically quite natural, ending with a big bang when the last branes collide. In an interesting brane inflationary scenario suggested by generic string model-building, we use the density perturbation observed in the cosmic microwave background and the coupling unification to find that the string scale is comparable to the GUT scale.Comment: 28 pages, 8 figures, 2 tables, JHEP forma

    Poly-instanton Inflation

    Get PDF
    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a K\"ahler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order Trh106T_{\rm rh}\simeq 10^6 GeV which requires Ne54N_e \simeq 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is ns0.96n_s \simeq 0.96, while the tensor-to-scalar ratio is r105r\simeq 10^{-5}. The volume of the Calabi-Yau is of order 10310^3 in string units, corresponding to an inflationary scale around 101510^{15} GeVComment: 20 pages, 4 figure

    Brane-Antibrane Inflation in Orbifold and Orientifold Models

    Get PDF
    We analyse the cosmological implications of brane-antibrane systems in string-theoretic orbifold and orientifold models. In a class of realistic models, consistency conditions require branes and antibranes to be stuck at different fixed points, and so their mutual attraction generates a potential for one of the radii of the underlying torus or the 4D string dilaton. Assuming that all other moduli have been fixed by string effects, we find that this potential leads naturally to a period of cosmic inflation with the radion or dilaton field as the inflaton. The slow-roll conditions are satisfied more generically than if the branes were free to move within the space. The appearance of tachyon fields at certain points in moduli space indicates the onset of phase transitions to different non-BPS brane systems, providing ways of ending inflation and reheating the corresponding observable brane universe. In each case we find relations between the inflationary parameters and the string scale to get the correct spectrum of density perturbations. In some examples the small numbers required as inputs are no smaller than 0.01, and are the same small quantities which are required to explain the gauge hierarchy.Comment: 30 pages, 2 figures. Substantial changes on version 1. New cosmological scenarios proposed including the dilaton as the inflaton. Main conclusions unchange

    A simple inert model solves the little hierarchy problem and provides a dark matter candidate

    Full text link
    We discuss a minimal extension to the standard model in which two singlet scalar states that only interacts with the Higgs boson is added. Their masses and interaction strengths are fixed by the two requirements of canceling the one-loop quadratic corrections to the Higgs boson mass and providing a viable dark matter candidate. Direct detection of the lightest of these new states in nuclear scattering experiments is possible with a cross section within reach of future experiments.Comment: Finite corrections included. Model modified. Conclusion unchange

    Modeling of Photoionized Plasmas

    Get PDF
    In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010, Utrecht, the Netherlands, March 15-17 201

    Assisted Inflation from Geometric Tachyon

    Full text link
    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes.Comment: 15 pages, 3 figures, minor modifications, to appear in JHE

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Non-Minimal Sneutrino Inflation, Peccei-Quinn Phase Transition and non-Thermal Leptogenesis

    Full text link
    We consider a phenomenological extension of the minimal supersymmetric standard model which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the lightest right-handed sneutrino. Inflation is followed by a Peccei-Quinn phase transition based on renormalizable superpotential terms, which resolves the strong CP and mu problems of the minimal supersymmetric standard model provided that one related parameter of the superpotential is somewhat small. Baryogenesis occurs via non-thermal leptogenesis, which is realized by the inflaton decay. Confronting our scenario with the current observational data on the inflationary observables, the baryon assymetry of the universe, the gravitino limit on the reheating temperature and the upper bound on the light neutrino masses, we constrain the effective Yukawa coupling involved in the decay of the inflaton to relatively small values and the inflaton mass to values lower than 10^12 GeV.Comment: 21 pages including 3 figures; Final versio

    Colliding branes and formation of spacetime singularities in string theory

    Full text link
    Colliding branes without Z2Z_{2} symmetry and the formation of spacetime singularities in string theory are studied. After developing the general formulas to describe such events, we study a particular class of exact solutions first in the 5-dimensional effective theory, and then lift it to the 10-dimensional spacetime. In general, the 5-dimensional spacetime is singular, due to the mutual focus of the two colliding 3-branes. Non-singular cases also exist, but with the price that both of the colliding branes violate all the three energy conditions, weak, dominant, and strong. After lifted to 10 dimensions, we find that the spacetime remains singular, whenever it is singular in the 5-dimensional effective theory. In the cases where no singularities are formed after the collision, we find that the two 8-branes necessarily violate all the energy conditions.Comment: revtex4, 13 figures. Some typos were corrected, and new refereeces added. Final version to appear in JHE
    corecore