10,601 research outputs found

    Some Shade Tree Pests in Eastern Massachusetts

    Get PDF
    n/

    Sculpting the Extra Dimensions: Inflation from Codimension-2 Brane Back-reaction

    Full text link
    We construct an inflationary model in 6D supergravity that is based on explicit time-dependent solutions to the full higher-dimensional field equations, back-reacting to the presence of a 4D inflaton rolling on a space-filling codimension-2 source brane. Fluxes in the bulk stabilize all moduli except the `breathing' modulus (that is generically present in higher-dimensional supergravities). Back-reaction to the inflaton roll causes the 4D Einstein-frame on-brane geometry to expand, a(t) ~ t^p, as well as exciting the breathing mode and causing the two off-brane dimensions to expand, r(t) ~ t^q. The model evades the general no-go theorems precluding 4D de Sitter solutions, since adjustments to the brane-localized inflaton potential allow the power p to be dialed to be arbitrarily large, with the 4D geometry becoming de Sitter in the limit p -> infinity (in which case q = 0). Slow-roll solutions give accelerated expansion with p large but finite, and q = 1/2. Because the extra dimensions expand during inflation, the present-day 6D gravity scale can be much smaller than it was when primordial fluctuations were generated - potentially allowing TeV gravity now to be consistent with the much higher gravity scale required at horizon-exit for observable primordial gravity waves. Because p >> q, the 4 on-brane dimensions expand more quickly than the 2 off-brane ones, providing a framework for understanding why the observed four dimensions are presently so much larger than the internal two. If uplifted to a 10D framework with 4 dimensions stabilized, the 6D evolution described here could describe how two of the six extra dimensions evolve to become much larger than the others, as a consequence of the enormous expansion of the 4 large dimensions we can see.Comment: 27 pages + appendices, 2 figure

    Circumventing the eta problem in building an inflationary model in string theory

    Full text link
    The eta problem is one of the most significant obstacles to building a successful inflationary model in string theory. Planck mass suppressed corrections to the inflaton potential generally lead to inflaton masses of order the Hubble scale and generate contributions of order unity to the eta slow roll parameter rendering prolonged slow roll inflation impossible. We demonstrate the severity of this problem in the context of brane anti-brane inflation in a warped throat of a Calabi-Yau flux compactification with all phenomenologically dangerous moduli stabilized. Using exact numerical solutions we show that the eta problem can be avoided in scenarios where the inflaton is non-minimally coupled to gravity and has Dirac-Born-Infeld (DBI) kinetic term. We show that the resulting cosmic microwave background (CMB) observables such as measures of non-gaussianites can, in principle, serve as a probe of scalar-gravity couplings.Comment: 8 pages, 3 figures; title changed and reference added to match published version in PR

    On equitably 2-colourable odd cycle decompositions

    Get PDF
    An l-cycle decomposition of K_v is said to be equitably 2-colourable if there is a 2-vertex-colouring of K_v such that each colour is represented (approximately) an equal number of times on each cycle: more precisely, we ask that in each cycle C of the decomposition, each colour appears on (l-1)/2 (floor) or (l-1)/2 (ceiling) of the vertices of C. In this paper we study the existence of equitably 2-colourable l -cycle decompositions of K_v, where l is odd, and prove the existence of such a decomposition for v=1,l (mod (2l))

    In situ mixing of organic matter decreases hydraulic conductivity of denitrification walls in sand aquifers

    Get PDF
    In a previous study, a denitrification wall was constructed in a sand aquifer using sawdust as the carbon substrate. Ground water bypassed around this sawdust wall due to reduced hydraulic conductivity. We investigated potential reasons for this by testing two new walls and conducting laboratory studies. The first wall was constructed by mixing aquifer material in situ without substrate addition to investigate the effects of the construction technique (mixed wall). A second, biochip wall, was constructed using coarse wood chips to determine the effect of size of the particles in the amendment on hydraulic conductivity. The aquifer hydraulic conductivity was 35.4 m/d, while in the mixed wall it was 2.8 m/d and in the biochip wall 3.4 m/d. This indicated that the mixing of the aquifer sands below the water table allowed the particles to re-sort themselves into a matrix with a significantly lower hydraulic conductivity than the process that originally formed the aquifer. The addition of a coarser substrate in the biochip wall significantly increased total porosity and decreased bulk density, but hydraulic conductivity remained low compared to the aquifer. Laboratory cores of aquifer sand mixed under dry and wet conditions mimicked the reduction in hydraulic conductivity observed in the field within the mixed wall. The addition of sawdust to the laboratory cores resulted in a significantly higher hydraulic conductivity when mixed dry compared to cores mixed wet. This reduction in the hydraulic conductivity of the sand/sawdust cores mixed under saturated conditions repeated what occurred in the field in the original sawdust wall. This indicated that laboratory investigations can be a useful tool to highlight potential reductions in field hydraulic conductivities that may occur when differing materials are mixed under field conditions

    Establishing the boundaries: the hippocampal contribution to imagining scenes

    Get PDF
    When we visualize scenes, either from our own past or invented, we impose a viewpoint for our “mind's eye” and we experience the resulting image as spatially coherent from that viewpoint. The hippocampus has been implicated in this process, but its precise contribution is unknown. We tested a specific hypothesis based on the spatial firing properties of neurons in the hippocampal formation of rats, that this region supports the construction of spatially coherent mental images by representing the locations of the environmental boundaries surrounding our viewpoint. Using functional magnetic resonance imaging, we show that hippocampal activation increases parametrically with the number of enclosing boundaries in the imagined scene. In contrast, hippocampal activity is not modulated by a nonspatial manipulation of scene complexity nor to increasing difficulty of imagining the scenes in general. Our findings identify a specific computational role for the hippocampus in mental imagery and episodic recollection

    Systematics of Moduli Stabilization, Inflationary Dynamics and Power Spectrum

    Get PDF
    We study the scalar sector of type IIB superstring theory compactified on Calabi-Yau orientifolds as a place to find a mechanism of inflation in the early universe. In the large volume limit, one can stabilize the moduli in stages using perturbative method. We relate the systematics of moduli stabilization with methods to reduce the number of possible inflatons, which in turn lead to a simpler inflation analysis. Calculating the order-of-magnitude of terms in the equation of motion, we show that the methods are in fact valid. We then give the examples where these methods are used in the literature. We also show that there are effects of non-inflaton scalar fields on the scalar power spectrum. For one of the two methods, these effects can be observed with the current precision in experiments, while for the other method, the effects might never be observable.Comment: 20 pages, JHEP style; v.2 and v.3: typos fixed, discussion and references adde

    Design and test of a 100 ampere-hour nickel cadmium battery module

    Get PDF
    A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module
    corecore