615 research outputs found

    Statement by Susan Burgess collected by Rachel George on June 26, 2014

    Get PDF
    Traumatic brain injury is a critical public health issue. Finite element (FE) head models are valuable instruments to explore the causal pathway from mechanical insult to resultant brain injury. Intracranial fluid-structure interaction (FSI) and biofidelity evaluation are two fundamental aspects of FE head modeling. The existing head models usually do not account for the fluid behavior of the cerebrospinal fluid (CSF) and its interaction with the other intracranial structures. Such simplification cannot guarantee a realistic interfacial behavior and may reduce the biofidelity of the head model. The biofidelity of a head model can be partially identified by comparing the model’s responses against relevant experimental data. Given the recent plethora of strain-based metrics for brain injury evaluation, a direct comparison between the computationally predicted deformation and experimentally measured strain is preferred. Due to the paucity of experimental brain deformation data, the majority of FE head models are evaluated by brain-skull relative motion data and then used for strain prediction. However, the validity of employing a model validated against brain-skull relative motion for strain prediction remains elusive. The current thesis attempted to advance these two important aspects of the FE head modeling. An FSI approach was implemented to describe the brain-skull interface and brain-ventricle interface, in which the CSF was modeled with an arbitrary Lagrangian-Eulerian multi-material formulation with its response being concatenated with the Lagrangian-simulated brain. Such implementation not only contributes to superior validation performance and improved injury predictability of the head models but also largely reveals the mechanisms of age-related acute subdural hematoma (ASDH) and periventricular injury. It is verified that the age-related brain atrophy exacerbates bridging vein strain that explains the predisposition of the elderly to ASDH, while the presence of a fluid ventricle induces strain concentration around the ventricles that aggravates the vulnerability of the periventricular region. For the biofidelity evaluation, the current thesis revisited the only existing dynamic experimental brain strain data with the loading regimes close to traumatic levels and proposed a new approach with guaranteed fidelity to estimate the brain strain. Biofidelity of a head model was evaluated by comparing the model’s responses against the newly estimated brain strain and previously presented brain-skull relative motion data. It is found that the head model evaluated by brain-skull relative motion cannot guarantee its strain prediction accuracy. Thus, it is advocated that a model designed for brain strain prediction should be validated against experimental brain strain, in addition to brain-skull relative motion. In conclusion, this thesis yields new knowledge of brain injury mechanism by implementing the FSI approach for the brain-skull interface and brain-ventricle interface and standardizes the strain validation protocol for FE head models by reinterpreting the experimental brain strain. It is hoped that this research has made a valuable and lasting contribution to an improved understanding of the basic head impact mechanics.QC 2019-10-30</p

    Statement by Susan Burgess collected by Rachel George on June 26, 2014

    Get PDF

    Ethnicity and the Writing of Medieval Scottish history

    Get PDF
    Historians have long tended to define medieval Scottish society in terms of interactions between ethnic groups. This approach was developed over the course of the long nineteenth century, a formative period for the study of medieval Scotland. At that time, many scholars based their analysis upon scientific principles, long since debunked, which held that medieval 'peoples' could only be understood in terms of 'full ethnic packages'. This approach was combined with a positivist historical narrative that defined Germanic Anglo-Saxons and Normans as the harbingers of advances of Civilisation. While the prejudices of that era have largely faded away, the modern discipline still relies all too often on a dualistic ethnic framework. This is particularly evident in a structure of periodisation that draws a clear line between the 'Celtic' eleventh century and the 'Norman' twelfth. Furthermore, dualistic oppositions based on ethnicity continue, particularly in discussions of the law, kingship, lordship and religion

    Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse

    Get PDF
    Boundary cap cells are a transient, neural-crest-derived population found at the motor exit point and dorsal root entry zone of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in boundary cap cells. We generated Ntn5 knockout mice and examined neurodevelopmental and boundary-cap-cell-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in boundary cap cells signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in motor neurons in restricting motor neuron cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic motor neurons are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic motor neurons in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor DCC is a potential receptor for NTN5 in motor neurons, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in boundary cap cells, functioning to prevent motor neuron migration out of the CNS

    Strategies to Enhance Out of State Enrollment at VCU Focusing on Name Recognition, Successful Alumni and Out of State Students

    Get PDF
    The project team has conceptualized several possible university marketing initiatives. These initiatives revolve around a central concept: increasing out-ofstate student enrollment at VCU. In concert with the Office of the Vice President of University Outreach, Team 3 will study and test the effectiveness of outdoor and other strategically located VCU advertising along major northeast corridor transportation routes and hubs to attract out-of state undergraduates
    • …
    corecore