47 research outputs found

    Producing pulses in the southern agricultural region

    Get PDF
    The development of pulses in Western Australia has undergone tremendous advances over the past 12 years. From a tiny industry in the early 1990’s where the knowledge of both scientists and farmers was very limited, we now have a robust industry with production packages and improved varieties for all the grain legumes species that are well suited to our environment. This book, which is both comprehensive and practical, collates much of the information gathered through pulse research and commercial experience over the past 10 years and will be valuable to all pulse growers, agronomists, students and industry advisors alike. The knowledge presented in this book has resulted from the dedicated efforts of scientists and industry specialists in Western Australia, working hand-in-hand with leading farmers, together with generous funding from the State Government and the Grains Research and Development Corporation (GRDC).https://researchlibrary.agric.wa.gov.au/bulletins/1154/thumbnail.jp

    Producing pulses in the northern agricultural region

    Get PDF
    Pulses, like most other temperate crops, are ideally suited to environments with mild temperatures, adequate rainfall and free draining soils that have a deep uniform profile, a medium to fine texture and slightly acid to neutral pH (6.5-7.5). Pulses when grown on these soils and in these environments produce reliable yields, are relatively easy to manage and achieve good returns on investment. Pulses can be grown very successfully in less ideal situations, but must then be managed carefully to ensure reliable yields. The different pulse species, and even different varieties of the same species, vary in how tolerant they are of less than ideal conditions. Understanding how pulses respond to soil and environment will make it easier to successfully manage crops in the range of situations occurring in the northern agricultural region.https://researchlibrary.agric.wa.gov.au/bulletins/1157/thumbnail.jp

    Crop Updates 2011 - Pests and Diseases

    Get PDF
    This session covers four papers from different authors: 1. Grains biosecurity – everyone’s business, Jeff Russell, Department of Agriculture and Food 2. Control of insect and mite pests in grains – insecticide resistance and integrated pest management (IPM), Paul Umina1, Svetlana Micic2 and Laura Fagan3, 1CESAR and The University of Melbourne, 2Department of Agriculture and Food, 3University of Western Australia 3. Effect of cropping rotations on pest mites of broadacre agriculture, Svetlana Micic, Mark Seymour, Tony Dore and Pam Burgess, Department of Agriculture and Food 4. Common bunt resistance in Western Australian wheat varieties, John Majewski, Manisha Shankar and Rob Loughman, Department of Agriculture and Foo

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Crop Updates 2003 - Cereals

    Get PDF
    This session covers twenty one papers from different authors: PLENARY 1. Recognising and responding to new market opportunities in the grains industry, Graham Crosbie, Manager, Grain Products Research, Crop Breeding, Plant Industries, Department of Agriculture 2. Stripe rust – where to now for the WA wheat industry? Robert Loughman1, Colin Wellings2 and Greg Shea11Department of Agriculture, 2University of Sydney Plant Breeding Institute, Cobbitty (on secondment from NSW Agriculture) 3. Benefits of a Grains Biosecurity Plan, Dr Simon McKirdy, Plant Health Australia, Mr Greg Shea, Department of Agriculture 4. Can we improve the drought tolerance of our crops? Neil C. Turner, CSIRO Plant Industry, Wembley 5. The silence of the lambing, Ross Kingwell, Department of Agriculture AGRONOMY AND VARIETIES 6. Maximising performance of wheat varieties, Brenda Shackley, Wal Anderson, Darshan Sharma, Mohammad Amjad, Steve Penny Jr, Melanie Kupsch, Anne Smith, Veronika Reck, Pam Burgess, Glenda Smith and Elizabeth Tierney, Department of Agriculture 7. Wheat variety performance in wet and dry, Peter Burgess 8. e-VarietyGuide for stripe rust – an updated version (1.02 – 2003), Moin Salam, Megan Collins, Art Diggle and Robert Loughman, Department of Agriculture 9. Baudin and Hamelin – new generation of malting barley developed in Western Australia, Blakely Paynter, Roslyn Jettner and Kevin Young, Department of Agriculture 10. Oaten hay production, Jocelyn Ball, Natasha Littlewood and Lucy Anderton, Department of Agriculture 11. Improving waterlogging tolerance in wheat and barley, Irene Waters and Tim Setter, Department of Agriculture 12. Broadscale variety comparisons featuring new wheat varieties, Jeff Russell, Department of Agriculture, Centre for Cropping Systems BIOTECHNOLOGY 13. Barley improvement in the Western Region – the intergration of biotechnologies, Reg Lance, Chengdao Li and Sue Broughton, Department of Agriculture 14. The Western Australian State Agricultural Biotechnology Centre – what we are and what we do, Michael Jones, WA State Agricultural Biotechnology Centre, Murdoch University 15. Protein and DNA methods for variety identification, Dr Grace Zawko, Saturn Biotech Limited 16. The Centre for High-throughput Agricultural Genetic Analysis (CHAGA), Keith Gregg, CHAGA, Murdoch University NUTRITION 17. Potassium – topdressed, drilled or banded? Stephen Loss, Patrick Gethin, Ryan Guthrie, Daniel Bell, Wesfarmers CSBP 18. Liquid phosphorus fertilisers in WA, Stephen Loss, Frank Ripper, Ryan Guthrie, Daniel Bell and Patrick Gethin, Wesfarmers CSBP 19. Wheat nutrition in the high rainfall cropping zone, Narelle Hill1and Laurence Carslake2, 1Department of Agriculture, 2Wesfarmers Landmark PESTS AND DISEASES 20. Managenent options for root lesion nematode in West Australian cropping systems, Vivien Vanstone, Sean Kelly and Helen Hunter, Department of Agriculture STORAGE 21. Aeration can profit your grain enterprise, Christopher R. Newman, Department of Agricultur

    Proteome and Membrane Fatty Acid Analyses on Oligotropha carboxidovorans OM5 Grown under Chemolithoautotrophic and Heterotrophic Conditions

    Get PDF
    Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium able to utilize CO and H2 to derive energy for fixation of CO2. Thus, it is capable of growth using syngas, which is a mixture of varying amounts of CO and H2 generated by organic waste gasification. O. carboxidovorans is capable also of heterotrophic growth in standard bacteriologic media. Here we characterize how the O. carboxidovorans proteome adapts to different lifestyles of chemolithoautotrophy and heterotrophy. Fatty acid methyl ester (FAME) analysis of O. carboxidovorans grown with acetate or with syngas showed that the bacterium changes membrane fatty acid composition. Quantitative shotgun proteomic analysis of O. carboxidovorans grown in the presence of acetate and syngas showed production of proteins encoded on the megaplasmid for assimilating CO and H2 as well as proteins encoded on the chromosome that might have contributed to fatty acid and acetate metabolism. We found that adaptation to chemolithoautotrophic growth involved adaptations in cell envelope, oxidative homeostasis, and metabolic pathways such as glyoxylate shunt and amino acid/cofactor biosynthetic enzymes

    Crop Updates 2006 - Weeds

    Get PDF
    This session covers thirty seven papers from different authors: 1. ACKNOWLEDGEMENTS, Alexandra Douglas, CONVENOR – WEEDS DEPARTMENT OF AGRICULTURE SPRAY TECHNOLOGY 2. Meeting the variable application goals with new application technology, Thomas M. Wolf, Agriculture and Agri-Food Canada, Saskatoon Research Centre 3. Spray nozzles for grass weed control, Harm van Rees, BCG (Birchip Cropping Group) 4. Boom sprayer setups – achieving coarse droplets with different operating parameters, Bill Gordon, Bill Gordon Consulting 5. Complying with product label requirements, Bill Gordon, Bill Gordon Consulting 6. IWM a proven performer over 5 years in 33 focus paddocks, Peter Newman and Glenn Adam, Department of Agriculture 7. Crop topping of wild radish in lupins and barley, how long is a piece of string? Peter Newman and Glenn Adam, Department of Agriculture 8. Determining the right timing to maximise seed set control of wild radish, Aik Cheam and Siew Lee, Department of Agriculture 9. Why weed wiping varies in success rates in broadacre crops? Aik Cheam1, Katherine Hollaway2, Siew Lee1, Brad Rayner1 and John Peirce1,1Department of Agriculture, 2Department of Primary Industries, Victoria 10. Are WA growers successfully managing herbicide resistant annual ryegrass? Rick Llewellynabc, Frank D’Emdena, Mechelle Owenb and Stephen Powlesb aCRC Australian Weed Management, School of Agricultural and Resource Economics, University of Western Australia; bWA Herbicide Resistance Initiative, University of Western Australia. cCurrent address: CSIRO Sustainable Ecosystems 11. Do herbicide resistant wild radish populations look different? Michael Walsh, Western Australian Herbicide Resistance Initiative, University of Western Australia 12. Can glyphosate and paraquat annual ryegrass reduce crop topping efficacy? Emma Glasfurd, Michael Walsh and Kathryn Steadman, Western Australian Herbicide Resistance Initiative, University of Western Australia 13. Tetraploid ryegrass for WA. Productive pasture phase AND defeating herbicide resistant ryegrass, Stephen Powlesa, David Ferrisab and Bevan Addisonc, aWA Herbicide Resistance Initiative, University of Western Australia; bDepartment of Agriculture, and cElders Limited 14. Long-term management impact on seedbank of wild radish with multiple resistance to diflufenican and triazines, Aik Cheam, Siew Lee, Dave Nicholson and Ruben Vargas, Department of Agriculture 15. East-west crop row orientation improves wheat and barley yields, Dr Shahab Pathan, Dr Abul Hashem, Nerys Wilkins and Catherine Borger3, Department of Agriculture, 3WAHRI, The University ofWestern Australia 16. Competitiveness of different lupin cultivars with wild radish, Dr Shahab Pathan, Dr Bob French and Dr Abul Hashem, Department of Agriculture 17. Managing herbicide resistant weeds through farming systems, Kari-Lee Falconer, Martin Harries and Chris Matthews, Department of Agriculture 18. Lupins tolerate in-row herbicides well, Peter Newman and Martin Harries, Department of Agriculture 19. Summer weeds can reduce wheat grain yield and protein, Dr Abul Hashem1, Dr Shahab Pathan1 and Vikki Osten3, 1Department Agriculture, 3Senior Agronomist, CRC for Australian Weed Management, Queensland Department of Primary Industries and Fisheries 20. Diuron post-emergent in lupins, the full story, Peter Newman and Glenn Adam, Department of Agriculture 21. Double incorporation of trifluralin, Peter Newman and Glenn Adam, Department of Agriculture 22. Herbicide tolerance of narrow leafed and yellow lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 23. MIG narrow leaf lupin herbicide tolerance trial, Richard Quinlan, Planfarm Pty Ltd, Trials Coordinator MIG; Debbie Allen, Research Agronomist – MIG 24. Herbicide tolerance of new albus lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 25. Field pea x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 26. Faba bean variety x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 27. Herbicide tolerance of new Kabili chickpeas, Harmohinder Dhammu, Owen Coppen and Chris Roberts, Department of Agriculture 28. Timing of phenoxys application in EAG Eagle Rock, Harmohinder Dhammu, David Nicholson, Department of Agriculture 29. Herbicide tolerance of new wheat varieties, Harmohinder Dhammu, David Nicholson, Department of Agriculture 30. Lathyrus sativus x herbicide tolerance, Mark Seymour, Department of Agriculture 31. Tolerance of annual pasture species to herbicides and mixtures containing diuron, Christiaan Valentine and David Ferris, Department of Agriculture 32. The impact of herbicides on pasture legume species – a summary of scientific trial results across 8 years, Christiaan Valentine and David Ferris, Department of Agriculture 33. The impact of spraytopping on pasture legume seed set, Christiaan Valentine and David Ferris, Department of Agriculture 34. Ascochyta interaction with Broadstrike in chickpeas, H.S. Dhammu1, A.K. Basandrai2,3, W.J. MacLeod1, 3 and C. Roberts1, 1Department of Agriculture, 2CSKHPAU, Dhaulakuan, Sirmour (HP), India and 3CLIMA 35. Best management practices for atrazine in broadacre crops, John Moore, Department of Agriculture, Neil Rothnie, Chemistry Centre of WA, Russell Speed, Department of Agriculture, John Simons, Department of Agriculture, and Ted Spadek, Chemistry Centre of WA 36. Biology and management of red dodder (Cuscuta planiflolia) – a new threat to the grains industry, Abul Hashem, Daya Patabendige and Chris Roberts, Department Agriculture 37. Help the wizard stop the green invaders! Michael Renton, Sally Peltzer and Art Diggle, Department of Agricultur

    Crop Updates 2002 - Geraldton

    Get PDF
    This session covers twenty seven papers from different authors: 1. Taking the Why out of Wyalkatchem – the new widely adapted wheat variety, Steve Penny Jr, Department of Agriculture 2. Future wheat varieties, Robin Wilson, Iain Barclay,Robyn McLean, Robert Loughman, Jenny Garlinge, Bill Lambe, Neil Venn and Peter Clarke Department of Agriculture 3. Maximising wheat variety performance through agronomic management, Wal Anderson, Raffaele Del Cima, James Bee, Darshan Sharma, Sheena Lyon, Melaine Kupsch, Mohammad Amjad, Pam Burgess, Veronika Reck, Brenda Shackley, Ray Tugwell, Bindi Webb and Steve Penny Jr Department of Agriculture 4. Cereal rust update 2002 – a new stem rust on Camm wheat, Robert Loughman1and Robert Park2 1Department of Agriculture, 2University of Sydney 5. Influence of nutrition and environmental factors on seed vigour in wheat, Darshan Sharma, Wal Anderson and Daya Patabendige, Department of Agriculture 6. Cereal aphids and direct feeding damage to cereals, Phil Michael, Department of Agriculture 7. A decision support system for control of aphids and BYDV in cereal crops, Debbie Thackray, Jenny Hawkes and Roger Jones, Department of Agriculture and Centre for Legumes in Mediterranean Agriculture 8. Summary of 2001 weather and seasonal prospects for 2002, David Stephens, Department of Agriculture 9. Towards a management package for grain protein in lupins, Bob French, Senior Research Officer, Department of Agriculture 10. Lupin genotypes respond differently to potash, Bob French and Laurie Wahlsten, Senior Research Officer and Technical Officer, Department of Agriculture 11. Time of harvest for improved seed yield of pulses, G. Riethmuller and B. French, Department of Agriculture 12. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture Western Australia 13. Field pea variety evaluation, T. Khan, Department of Agriculture Western Australia 14. Diamondback moth (DBM) in canola, Kevin Walden, Department of Agriculture 15. WA blackleg resistance ratings on canola varieties for 2002, Ravjit Khangura, Martin J. Barbetti and Graham Walton, Department of Agriculture 16. The effect of single or multiple spray treatments on the control of Diamondback moth (Plutella xylostella) and yield of canola at Wongan Hills, Françoise Berlandier, Paul Carmody and Christiaan Valentine, Department of Agriculture 17. Perennial pastures in annual cropping systems: Lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 18. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Department of Agriculture 19. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 20. Economic comparisons of farming systems for the medium rainfall northern sandplain, Caroline Peek and David Rogers, Department of Agriculture 21. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 22. Major outcomes from IWM demonstration sites, Alexandra Douglas, Department of Agriculture 23. Understanding the weed seed bank life of important agricultural weeds, Sally Peltzer and Paul Matson, Department of Agriculture 24. Seeding rate, row spacing and herbicides for weed control, David Minkey, Department of Agriculture 25. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell and Giles Glasson, Department of Agriculture, Dean Thomas, Faculty of Agriculture, University of Western Australia 26. Group F resistant wild radish: What’s new? Aik Cheam1, Siew Lee1and Mike Clarke2, 1Department of Agriculture WA, 2Aventis Crop Science 27. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agricultur
    corecore