1,273 research outputs found

    CLUSTERING OF SMALL AGRO-PROCESSING FIRMS IN INDONESIA

    Get PDF
    Small-scale industries in Indonesia provide more than 65% of total manufacturing employment. Sixty-three percent of small-scale firm employment is in firms that are clustered. A cluster is defined statistically in Indonesia as at least 20 firms in a village. For some agro-processing industries, such as bamboo plaiting, clustering does not involve interaction among firms; for others, notably the furniture industry, clustering firms make joint marketing efforts, subcontract each other, and share large orders. This article uses two recent case studies in the agro-processing sector – the furniture and the palm sugar industries – in Central Java. We argue that the target market of the industry (local or international) influences the nature of the contracts and other forms of interaction in the clusters. Targeting an international market requires formal contracts, more focus on marketing, and separate roles for finishing firms and subcontracting firms. Policy should be directed at enabling clusters to shift to the international market by improving contract enforcement regulations, vocational training, and providing opportunities for group lending.Agribusiness, Industrial Organization,

    The KLT relations in unimodular gravity

    Get PDF
    Here we initiate a systematic study of some of the symmetry properties of unimodular gravity, building on much of the known structure of general relativity, and utilizing the powerful technology developed in that context, such as the spinor helicity formal-ism. In particular, we show, up to five-points and tree-level, that the KLT relations of perturbative gravity hold for trace free or unimodular gravity. This work is in conjunction with a paper written with A. Welman, J. Murugan and G.F.R. Ellis (ARXIV: 1511.08517

    Broad-Scale Relations between Conservation Reserve Program and Grassland Birds: Do Cover Type, Configuration and Contract Age Matter?

    Get PDF
    The Conservation Reserve Program (CRP) is a voluntary cropland set-aside program where environmentally-sensitive cropland is retired to a conservation practice. Grassland birds should benefit because most CRP is grass habitat and because amount of land in CRP is highest in agriculture-dominated areas of the United States where grassland habitat has been most impacted. We used the Breeding Bird Survey and Common Land Unit (CLU) data (spatially-explicit data of farm field boundaries and land cover) to identify relations between types and configurations of CRP and grassland bird abundance in 3 Midwestern states. All 13 species we studied were related to at least one aspect of CRP habitat - specific conservation practices (e.g., native vs. exotic grass), CRP habitat configuration, or habitat age. Treating all types of CRP as a single habitat type would have obscured bird-CRP relations. Based on our results, creating a mosaic of large and small set-aside patches could benefit both area-sensitive and edge-associated grassland birds. Additionally, northern bobwhite and other birds that use early successional grasslands would benefit from periodic disturbances. CRP, agrienvironment schemes, and other government-sponsored set-aside programs may be most successful when administered as part of a targeted, regional conservation plan

    The gravity of modern amplitudes: using on-shell scattering amplitudes to probe gravity

    Get PDF
    In this thesis, we explore the use of on-shell scattering amplitudes as a way to understand various gravitational phenomena. We show that amplitudes are a viable way of studying certain aspects of gravity and showcase three such novel results here. First is the computation of the deflection angle of both light and gravitational waves due to a massive static body. We compute this from a purely on-shell amplitude perspective and find that the result is in complete agreement with the corresponding calculation in General Relativity. The second is the ability to derive classical results from the amplitudes. In this section we use on-shell scattering amplitudes to derive the perturbative metric of a rotating black hole in a generic form of Einstein gravity that has additional terms cubic in the Riemann tensor. We show that the metric we derive reduces to correct static metric in the zero angular momentum limit. We show that at first order in the coupling, the classical potential can be written to all orders in spin as a differential operator acting on the non-rotating potential. Further we compute the classical impulse and scattering angle of such a black hole. The third is the resolution of a classical discontinuity in N = 1 super gravity. Here we use on-shell methods for massive particles and use them to compute the supersymmetric version of the van Damme-Veltman-Zakharov (vDVZ) discontinuity. We construct the amplitudes of massive gravitinos (the superpartner of massive gravitons) and show that in the massless limit of the gravitinos there is the same discontinuity as found in massive gravity. This method sheds light on intricacies of the discontinuity that is obscured when handled classically

    Using effective medium theories to design tailored nanocomposite materials for optical systems

    Full text link
    Modern optical systems are subject to very restrictive performance, size and cost requirements. Especially in portable systems size often is the most important factor, which necessitates elaborate designs to achieve the desired specifications. However, current designs already operate very close to the physical limits and further progress is difficult to achieve by changing only the complexity of the design. Another way of improving the performance is to tailor the optical properties of materials specifically to the application at hand. A class of novel, customizable materials that enables the tailoring of the optical properties, and promises to overcome many of the intrinsic disadvantages of polymers, are nanocomposites. However, despite considerable past research efforts, these types of materials are largely underutilized in optical systems. To shed light into this issue we, in this paper, discuss how nanocomposites can be modeled using effective medium theories. In the second part, we then investigate the fundamental requirements that have to be fulfilled to make nanocomposites suitable for optical applications, and show that it is indeed possible to fabricate such a material using existing methods. Furthermore, we show how nanocomposites can be used to tailor the refractive index and dispersion properties towards specific applications.Comment: This is a draft manuscript of a paper published in Proc. SPIE (Proceedings Volume 10745, Current Developments in Lens Design and Optical Engineering XIX, Event: SPIE Optical Engineering + Applications, 2018

    Life-cycle costs of high-performance cells

    Get PDF
    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended
    • …
    corecore