54 research outputs found
Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and land-use change
A quantitative understanding of riverine nitrogen (N) export in response to human activities and climate change is critical for developing effective watershed N pollution control measures. This study quantified net anthropogenic N inputs (NANI) and riverine dissolved inorganic N (DIN=NO3-N+NH4-N+NO2-N) export for the upper Jiaojiang River catchment in eastern China over the 1980-2010 time period and examined how NANI, hydroclimate, and land-use practices influenced riverine DIN export. Over the 31-yr study period, riverine DIN yield increased by 1.6-fold, which mainly results from a ~77% increase in NANI and increasing fractional delivery of NANI due to a ~55% increase in developed land area. An empirical model that utilizes an exponential function of NANI and a power function of combining annual water discharge and developed land area percentage could account for 89% of the variation in annual riverine DIN yields in 1980-2010. Applying this model, annual NANI, catchment storage, and natural background sources were estimated to contribute 57%, 22%, and 21%, respectively, of annual riverine DIN exports on average. Forecasting based on a likely future climate change scenario predicted a 19.6% increase in riverine DIN yield by 2030 due to a 4% increase in annual discharge with no changes in NANI and land-use compared to the 2000-2010 baseline condition. Anthropogenic activities have increased both the N inputs available for export and the fractional export of N inputs, while climate change can further enhance riverine N export. An integrated N management strategy that considers the influence of anthropogenic N inputs, land-use and climate change is required to effectively control N inputs to coastal areas
Genome-wide alternative splicing profile in the posterior kidney of brown trout (Salmo trutta) during proliferative kidney disease
The cnidarian myxozoan parasite Tetracapsuloides bryosalmonae causes chronic proliferative kidney disease (PKD) in salmonids. This parasite is a serious threat to wild and cultured salmonids. T. bryosalmonae undergoes intra-luminal sporogonic development in the kidney of brown trout (Salmo trutta) and the viable spores are released via urine. We investigated the alternative splicing pattern in the posterior kidney of brown trout during PKD.RNA-seq data were generated from the posterior kidney of brown trout collected at 12 weeks post-exposure to T. bryosalmonae. Subsequently, this data was mapped to the brown trout genome. About 153 significant differently expressed alternatively spliced (DEAS) genes, (delta PSI = 5%, FDR P-value < 0.05) were identified from 19,722 alternatively spliced events. Among the DEAS genes, the least and most abundant alternative splicing types were alternative 5\u27 splice site (5.23%) and exon skipping (70.59%), respectively. The DEAS genes were significantly enriched for sodium-potassium transporter activity and ion homeostasis (ahcyl1, atp1a3a, atp1a1a.1, and atp1a1a.5). The protein-protein interaction network analysis enriched two local network clusters namely cation transporting ATPase C-terminus and Sodium/potassium ATPase beta chain cluster, and mixed inclusion of Ion homeostasis and EF-hand domain cluster. Furthermore, the human disease-related salmonella infection pathway was significantly enriched in the protein-protein interaction network.This study provides the first baseline information about alternative splicing in brown trout during PKD. The generated data lay a foundation for further functional molecular studies in PKD - brown trout infection model. The information generated from the present study can help to develop therapeutic strategies for PKD in the future
Morphological and Molecular Characterization of a New Myxozoan, Myxobolus grassi sp. nov. (Myxosporea), Infecting the Grass Carp, Ctenopharyngodon idella in the Gomti River, India
Myxosporeans are well-known parasites infecting food fishes in fresh and marine water around the globe. Grass carp (Ctenopharyngodon idella), a freshwater food fish commonly cultured in India with has significant economic importance. Herein, the study focuses on the description of a new myxosporean species, Myxobolus grassi sp. nov. from the gills as primary site and liver as secondary site of infection in grass carp. Both organs (gill and liver) were infected concurrently in the host and the prevalence of grass carp infection was 4.05% in gill filaments and liver, respectively. Identification of species was based on the morphological and morphometric features of the myxospore as well as 18S rDNA sequence data. A smear from gill and liver exhibited hundreds of morphologically similar myxospores. BLAST search revealed 98% sequence similarity and 0.03 genetic distance with M. catlae (KM029967) infecting gill lamellae of mrigal carp (Cirrhinus cirrhosus) from India and 98-84% sequence similarity with other myxobolids in India, China, Japan, Malaysia, Turkey and Hungary. Phylogenetically, it clustered with other myxobolids infecting gills and related organs (i.e., vital organ) of Indian cyprinid carp species. On the basis of myxospore morphology and 18S sequence, we propose M. grassi sp. nov
Identification of in vivo induced antigens of the malacosporean parasite Tetracapsuloides bryosalmonae (Cnidaria) using in vivo induced antigen technology
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that causes proliferative kidney disease (PKD) in wild and farmed salmonids in Europe and North America. The life cycle of T. bryosalmonae completes between invertebrate bryozoan and vertebrate fish hosts. Inside the fish, virulence factors of T. bryosalmonae are induced during infection or interactions with host cells. T. bryosalmonae genes expressed in vivo are likely to be important in fish pathogenesis. Herein, we identify in vivo induced antigens of T. bryosalmonae during infection in brown trout (Salmo trutta) using in vivo induced antigen technology (IVIAT). Brown trout were exposed to the spores of T. bryosalmonae and were sampled at different time points. The pooled sera were first pre-adsorbed with antigens to remove false positive results. Subsequently, adsorbed sera were used to screen a T. bryosalmonae cDNA phage expression library. Immunoscreening analysis revealed 136 immunogenic T. bryosalmonae proteins induced in brown trout during parasite development. They are involved in signal transduction, transport, metabolism, ion-protein binding, protein folding, and also include hypothetical proteins, of so far unknown functions. The identified in vivo induced antigens will be useful in the understanding of T. bryosalmonae pathogenesis during infection in susceptible hosts. Some of the antigens found may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against T. bryosalmonae in salmonids
- …