8,781 research outputs found

    Size matters: the value of small populations for wintering waterbirds

    Get PDF
    Protecting systematically selected areas of land is a major step towards biodiversity conservation worldwide. Indeed, the identification and designation of protected areas more often than not forms a core component of both national and international conservation policies. In this paper we provide an overview of those Special Protection Areas and Ramsar Sites that have been classified in Great Britain as of 1998/99 for a selection of wintering waterbird species, using bird count data from the Wetland Bird Survey. The performance of this network of sites is remarkable, particularly in comparison with published analyses of networks elsewhere in the world. Nevertheless, the current site-based approach, whilst having the great benefit of simplicity, is deliberately biased towards aggregating species at the expense of the more dispersed distribution species. To ensure that the network continues successfully to protect nationally and internationally important waterbird populations, efforts now need to concentrate on the derivation of species-specific representation targets and, in particular, the ways in which these can be incorporated into the site selection process. Although these analyses concern the performance of protected areas for waterbirds in Great Britain, the results have wide-ranging importance for conservation planning in general and the design of protected area networks

    Developing Intensity-Duration-Frequency (IDF) Curves From Satellite-Based Precipitation: Methodology and Evaluation

    Get PDF
    Given the continuous advancement in the retrieval of precipitation from satellites, it is important to develop methods that incorporate satellite-based precipitation data sets in the design and planning of infrastructure. This is because in many regions around the world, in situ rainfall observations are sparse and have insufficient record length. A handful of studies examined the use of satellite-based precipitation to develop intensity-duration-frequency (IDF) curves; however, they have mostly focused on small spatial domains and relied on combining satellite-based with ground-based precipitation data sets. In this study, we explore this issue by providing a methodological framework with the potential to be applied in ungauged regions. This framework is based on accounting for the characteristics of satellite-based precipitation products, namely, adjustment of bias and transformation of areal to point rainfall. The latter method is based on previous studies on the reverse transformation (point to areal) commonly used to obtain catchment-scale IDF curves. The paper proceeds by applying this framework to develop IDF curves over the contiguous United States (CONUS); the data set used is Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR). IDFs are then evaluated against National Oceanic and Atmospheric Administration (NOAA) Atlas 14 to provide a quantitative estimate of their accuracy. Results show that median errors are in the range of (17–22%), (6–12%), and (3–8%) for one-day, two-day and three-day IDFs, respectively, and return periods in the range (2–100) years. Furthermore, a considerable percentage of satellite-based IDFs lie within the confidence interval of NOAA Atlas 14

    Gap Probabilities for Edge Intervals in Finite Gaussian and Jacobi Unitary Matrix Ensembles

    Full text link
    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N×N N \times N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general NN case. For N=1 and N=2 the probabilities and thus the solution of the equations are given explicitly. An asymptotic expansion for large gap size is obtained from the equation in the Hermite case, and also studied is the scaling at the edge of the Hermite spectrum as N→∞ N \to \infty , and the Jacobi to Hermite limit; these last two studies make correspondence to other cases reported here or known previously. Moreover, the differential equation arising in the Hermite ensemble is solved in terms of an explicit rational function of a {Painlev\'e-V} transcendent and its derivative, and an analogous solution is provided in the two Jacobi cases but this time involving a {Painlev\'e-VI} transcendent.Comment: 32 pages, Latex2

    Bar Diagnostics in Edge-On Spiral Galaxies. II. Hydrodynamical Simulations

    Full text link
    We develop diagnostics based on gas kinematics to identify the presence of a bar in an edge-on spiral galaxy and determine its orientation. We use position-velocity diagrams (PVDs) obtained by projecting edge-on two-dimensional hydrodynamical simulations of the gas flow in a barred galaxy potential. We show that when a nuclear spiral is formed, the presence of a gap in the PVDs, between the signature of the nuclear spiral and that of the outer parts of the disk, reliably indicates the presence of a bar. This gap is due to the presence of shocks and inflows in the simulations, leading to a depletion of the gas in the outer bar region. If no nuclear spiral signature is present in a PVD, only indirect arguments can be used to argue for the presence of a bar. The shape of the signature of the nuclear spiral, and to a lesser extent that of the outer bar region, allows to determine the orientation of the bar with respect to the line-of-sight. The presence of dust can also help to discriminate between viewing angles on either side of the bar. Simulations covering a large fraction of parameter space constrain the bar properties and mass distribution of observed galaxies. The strongest constraint comes from the presence or absence of the signature of a nuclear spiral in the PVD.Comment: 25 pages (AASTeX, aaspp4.sty), 11 jpg figures. Accepted for publication in The Astrophysical Journal. Online manuscript with PostScript figures available at: http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    The molecular polar disc in NGC 2768

    Full text link
    We present CO(1-0) and CO(2-1) maps of the molecular polar disc in the elliptical galaxy NGC 2768 obtained at the IRAM Plateau de Bure Interferometer. The maps have a resolution of 2.6" x 2.3" and 1.2" x 1.2" for the CO(1-0) and CO(2-1) lines, respectively. The CO maps complete the unique picture of the interstellar medium (ISM) of NGC 2768; the dust, molecular gas, ionised gas and neutral hydrogen (HI) trace the recent acquisition of cold and cool gas over two orders of magnitude in radii (and much more in density). In agreement with the other ISM components, the CO distribution extends nearly perpendicularly to the photometric major axis of the galaxy. Velocity maps of the CO show a rotating polar disc or ring in the inner kiloparsec. This cool gas could lead to kinematic substructure formation within NGC 2768. However, the stellar velocity field and H-beta absorption linestrength maps from the optical integral-field spectrograph SAURON give no indication of a young and dynamically cold stellar population coincident with the molecular polar disc. Very recent or weak star formation, undetectable in linestrengths, nevertheless remains a possibility and could be at the origin of some of the ionised gas observed. Millimetre continuum emission was also detected in NGC 2768, now one of only a few low-luminosity active galactic nuclei with observed millimetre continuum emission.Comment: Accepted for publication in MNRAS, 11 pages, 8 figure

    WTO accession, the changing competitiveness of foreign-financed firms and regional development in Guangdong of southern China

    Get PDF
    This paper investigates the changing competitiveness of foreign-financed manufacturing firms and its implications for regional development in Guangdong province of southern China in the run-up to World Trade Organization (WTO) accession. It is argued that transnational corporations (TNCs) and some competitive, large-scale, locally-funded firms in Guangdong will triumph after WTO accession. The crowding-out process of small and medium sized enterprises (SMEs) in Guangdong will be accelerated in the near future, as they are competing directly with TNCs, and as their competitive advantages are diminishing, due to bureaucratic red tape and the rigorous enforcement of new government policies. Due to close business linkages with local privately-funded firms, the competitiveness and vitality of foreign-financed enterprises will have profound long term effects on the economic development of Guangdong, before and after WTO accession

    Bar Diagnostics in Edge-On Spiral Galaxies. I. The Periodic Orbits Approach

    Full text link
    We develop diagnostics to detect the presence and orientation of a bar in an edge-on disk, using its kinematical signature in the position-velocity diagram (PVD) of a spiral galaxy observed edge-on. Using a well-studied barred spiral galaxy mass model, we briefly review the orbital properties of two-dimensional non-axisymmetric disks and identify the main families of periodic orbits. We use those families as building blocks to model real galaxies and calculate the PVDs obtained for various realistic combinations of periodic orbit families and for a number of viewing angles with respect to the bar. We show that the global structure of the PVD is a reliable bar diagnostic in edge-on disks. Specifically, the presence of a gap between the signatures of the families of periodic orbits in the PVD follows directly from the non-homogeneous distribution of the orbits in a barred galaxy. Similarly, material in the two so-called forbidden quadrants of the PVD results from the elongated shape of the orbits. We show how the shape of the signatures of the dominant x1 and x2 families of periodic orbits in the PVD can be used efficiently to determine the viewing angle with respect to the bar and, to a lesser extent, to constrain the mass distribution of an observed galaxy. We also address the limitations of the models when interpreting observational data.Comment: 22 pages, 9 figures (AASTeX, aaspp4.sty). Accepted for publication in The Astrophysical Journa

    Star formation and figure rotation in the early-type galaxy NGC2974

    Get PDF
    We present Galaxy Evolution Explorer (GALEX) far (FUV) and near (NUV) ultraviolet imaging of the nearby early-type galaxy NGC2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2kpc, with suggestions of another partial ring at an even larger radius. Blue FUV-NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outward, suggesting young stellar populations (< 1Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9kpc, respectively), as traced by [OIII] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of 78±678\pm6 km/s/kpc, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC2974 as an E4 elliptical.Comment: 13 pages, 10 figures, Changed content, Accepted for publication in MNRA

    Coalition theories: empirical evidence for dutch municipalities

    Get PDF
    The paper analyzes coalition formation in Dutch municipalities. After discussing the main features of the institutional setting, several theories are discussed, which are classified as size oriented, policy oriented and actor oriented models. A test statistic is proposed to determine the predictive power of these models. The empirical analysis shows that strategic positions as well as some of the distinguished preferences are important in the setting of Dutch municipalities. Especially, the dominant minimum number principle yields highly significant results for coalition formations in the period 1978–1986

    Comparing peanut-shaped `bulges' to N-body simulations and orbital calculations

    Full text link
    We present a near-infrared K_n-band photometric study of edge-on galaxies with a box/peanut-shaped `bulge'. The morphology of the galaxies is analysed using unsharp masking and fits to the vertical surface brightness profiles, and the results are compared to N-body simulations and orbital calculations of barred galaxies. Both theoretical approaches reproduce the main structures observed.Comment: 4 pages, 5 figures, to appear in the proceedings of "The Evoution of Galaxies. III. From simple approaches to self-consistent models" (Kiel, July 2002), G. Hensler et al. (eds.
    • 

    corecore