55 research outputs found

    Hydrometallurgical processing of gold-containing ore and its washed products

    Get PDF
    This article presents the results of hydrometallurgical studies of gold-bearing ore. The experiments were carried out on 2 parallel weighed portions with the analysis of products by assay (cake) and atomic absorption (solution) analyzes of gold. To determine the technological properties, tests were carried out on the direct and sorption cyanidation of ore samples using different material sizes, the concentration of the complexing agent in the solution and the preliminary treatment of the pulp with lime. The study of the sorption activity of the ore, as well as the dynamics of gold dissolution was carried out

    Influence of temperature on the strength of alumina-containing raw materials

    Get PDF
    The work is devoted to the study of the effect of temperatures on the physical and mechanical properties of an alumina-containing product in order to select crushing and grinding equipment for subsequent enrichment operations. In the course of the study, three series of experiments were carried out: at room temperature 23 °C, with heating the material in a drying chamber to 200 °C, and also under cryogenic exposure – 195,75 °C using liquid nitrogen. As a result, the substantiation of the change in the physical and mechanical properties of raw materials when changing is presented. Recommendations for the selection of crushing equipment have been developed

    Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield

    Get PDF
    The paper presents the analysis of studies of the enrichment of sulfide and oxidized ores in Yakutia deposits. The ore of the deposit is a mixture of primary, mixed and oxidized ores. The main useful component of the studied ore samples is gold with a content of 1.5 to 2.8 g/t, the silver content is low – 5-17 g/t. Ore minerals are represented by sulfides, among which pyrite predominates. The total sulfide content does not exceed 3-5 %. The presence in the ore of free and associated gold with a grain size from fractions of a micron to 1.5 mm. Gold is represented by nuggets in intergrowth with sulfides and also forms independent inclusions. Ores are classified as easily cyanidable. It was found that the content of amalgamable gold is 10-49, the share of cyanidable gold ranges from 66.67-91, the share of refractory gold is 9.0-33.33 %, which in absolute amount equals to 0.24-0.8 g/t. The extraction of gold in gravitation concentrate varies depending on the gold content in the ore and the yield of concentrate and for ores with a gold content of 1.5-2.8 g/t from 40 to 60 %. The direct cyanidation of all studied ore samples established the possibility of extracting gold into solution up to 86.7-92.9 %, the gold content in cyanidation cakes is 0.2-0.3 g/t. Investigations of the gravitation concentrate by the method of intensive cyanidation showed that with an initial gold content of ~ 500 g/t, up to 98.9 % is extracted into the solution. The gold content in intensive cyanide cakes will be 6-15 g/t. A set of studies carried out by the authors of the article at various institutes showed that it is advisable to process ore from the deposit using cyanidation technology with preliminary gravitational extraction of gold

    Investigating particle acceleration dynamics in interpenetrating magnetized collisionless super-critical shocks

    Full text link
    Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al. 2021, 2022), as well as the collision of two sub-critical shocks (Fazzini et al. 2022). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the ''phase-locking effect'' (Fazzini et al. 2022) from such an event. This effect is predicted to significantly boost the energy spectrum of the energized ions compared to a single supercritical collisionless shock. We thus anticipate that the results obtained in the proposed experiment could have a significant impact on our understanding of one type of primary source (acceleration of thermal ions as opposed to secondary acceleration mechanisms of already energetic ions) of ion energization of particles in the Universe

    Experimental investigation of the effect of ionization on the 51V(p,n)51Cr reaction

    Full text link
    The investigation of the effects of average atomic ionization on nuclear reactions is of prime importance for nuclear astrophysics. No direct experimental measurement using a plasma target has been done yet. In this regard, we measured for the first time the neutron production of a (p,n) reaction in different states of ionization. The studied nuclear reaction was 51V(p,n)51Cr. We measured a significantly lower neutron production than expected when the target was ionized, even when taking into account existing electron screening theory or the effect of the stopping power in the target on the injected proton beam. This experiment is a first step in the process to characterize the influence of ionization at astrophysically relevant energies.Comment: 20 pages, 10 figures, submitted to EP

    Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization

    Get PDF
    Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation. In the absence of particle collisions in the system, theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure (as in our case) is able to induce energy dissipation and allow shock formation. Shock formation can alternatively take place when two plasmas interact, through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation. Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers (JLF/Titan at LLNL and LULI2000) with high-strength magnetic fields, we have investigated the generation of a magnetized collisionless shock and the associated particle energization. We have characterized the shock as being collisionless and supercritical. We report here on measurements of the plasma density and temperature, the electromagnetic field structures, and the particle energization in the experiments, under various conditions of ambient plasma and magnetic field. We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations. As a companion paper to Yao et al. [Nat. Phys. 17, 1177-1182 (2021)], here we show additional results of the experiments and simulations, providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration
    • 

    corecore