10 research outputs found
A Mortal Complication in a Case with Mucopolysaccharidosis Type I Following Hematopoietic Stem Cell Transplantation: Pulmonary Haemorrhage
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease due to mutations within the gene IDUA encoding the alpha-L-iduronidase. The clinical manifestations concern multisystemic involvement. There are two disease modifying therapies, enzyme replacement therapy and haematopoietic stem cell transplantation (HSCT). Pulmonary haemorrhage (PH) is a rare complication of HSCT and the case was presented with the reason that the related reports were few in MPS I
Clinical and molecular characteristics and time of diagnosis of patients with classical galactosemia in an unscreened population in Turkey
Ozturk-Hismi, Burcu/0000-0001-7146-0248WOS: 000474203700003PubMed: 31194682Classical galactosemia is an autosomal recessive inborn error of metabolism caused by biallelic pathogenic variants in the GALT gene. With the benefit of early diagnosis by newborn screening, the acute presentation of galactosemia can be prevented. In this study, we describe the clinical phenotypes, time of diagnosis and GALT genotypes of 76 galactosemia patients from Turkey, where the disease is not yet included in the newborn screening program. The median age at first symptom was 10 days (range 5-20), while the median age at diagnosis was 30 days (range 17-53). Nearly half of the patients (36 patients, 47.4%) were diagnosed later than age 1 month. Fifty-eight individuals were found to have 18 different pathogenic variants in their 116 mutant alleles. In our sample, Q188R variant has the highest frequency with 53%, the other half of the allele frequency of the patients showed 17 different genotypes. Despite presenting with typical clinical manifestations, classical galactosemia patients are diagnosed late in Turkey. Due to the geographical location of our country, different pathogenic GALT variants may be seen in Turkish patients. In the present study, a clear genotype-phenotype correlation could not be established in patients
An unusual cause of cavitating leukoencephalopathy: ethylmalonic encephalopathy
WOS: 000433236400022PubMed ID: 2946466
Clinical and molecular characteristics and time of diagnosis of patients with classical galactosemia in an unscreened population in Turkey
###EgeUn###Classical galactosemia is an autosomal recessive inborn error of metabolism caused by biallelic pathogenic variants in the GALT gene. With the benefit of early diagnosis by newborn screening, the acute presentation of galactosemia can be prevented. In this study, we describe the clinical phenotypes, time of diagnosis and GALT genotypes of 76 galactosemia patients from Turkey, where the disease is not yet included in the newborn screening program. The median age at first symptom was 10 days (range 5-20), while the median age at diagnosis was 30 days (range 17-53). Nearly half of the patients (36 patients, 47.4%) were diagnosed later than age 1 month. Fifty-eight individuals were found to have 18 different pathogenic variants in their 116 mutant alleles. In our sample, Q188R variant has the highest frequency with 53%, the other half of the allele frequency of the patients showed 17 different genotypes. Despite presenting with typical clinical manifestations, classical galactosemia patients are diagnosed late in Turkey. Due to the geographical location of our country, different pathogenic GALT variants may be seen in Turkish patients. In the present study, a clear genotype-phenotype correlation could not be established in patients
Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: Characterization of a founder mutation by use of recombinant CPS1 from insect cells expression
Carbamoyl phosphate synthetase 1 (CPS1) deficiency due to CPS1 mutations is a rare autosomal-recessive urea cycle disorder causing hyperammonemia that can lead to death or severe neurological impairment. CPS1 catalyzes carbamoyl phosphate formation from ammonia, bicarbonate and two molecules of ATP, and requires the allosteric activator N-acetyl-L-glutamate. Clinical mutations occur in the entire CPS1 coding region, but mainly in single families, with little recurrence. We characterized here the only currently known recurrent CPS1 mutation, p.Val1013del, found in eleven unrelated patients of Turkish descent using recombinant His-tagged wild type or mutant CPS1 expressed in baculovirus/insect cell system. The global CPS1 reaction and the ATPase and ATP synthesis partial reactions that reflect, respectively, the bicarbonate and the carbamate phosphorylation steps, were assayed. We found that CPS1 wild type and V1013del mutant showed comparable expression levels and purity but the mutant CPS1 exhibited no significant residual activities. In the CPS1 structural model, V1013 belongs to a highly hydrophobic beta-strand at the middle of the central beta-sheet of the A subdomain of the carbamate phosphorylation domain and is close to the predicted carbamate tunnel that links both phosphorylation sites. Haplotype studies suggested that p.Val1013del is a founder mutation. In conclusion, the mutation p.V1013del inactivates CPS1 but does not render the enzyme grossly unstable or insoluble. Recurrence of this particular mutation in Turkish patients is likely due to a founder effect, which is consistent with the frequent consanguinity observed in the affected population. (C) 2014 Elsevier Inc All rights reserved