374 research outputs found

    The Distribution of Redshifts in New Samples of Quasi-stellar Objects

    Get PDF
    Two new samples of QSOs have been constructed from recent surveys to test the hypothesis that the redshift distribution of bright QSOs is periodic in log(1+z)\log(1+z). The first of these comprises 57 different redshifts among all known close pairs or multiple QSOs, with image separations \leq 10\arcsec, and the second consists of 39 QSOs selected through their X-ray emission and their proximity to bright comparatively nearby active galaxies. The redshift distributions of the samples are found to exhibit distinct peaks with a periodic separation of 0.089\sim 0.089 in log(1+z)\log(1+z) identical to that claimed in earlier samples but now extended out to higher redshift peaks z=2.63,3.45z = 2.63, 3.45 and 4.47, predicted by the formula but never seen before. The periodicity is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is present in these three datasets at an overall significance level 10510^{-5} - 10610^{-6}, and appears not to be explicable by spectroscopic or similar selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure

    Supernovae and Californium 254

    Get PDF
    [No abstract

    Policy opportunities

    Get PDF
    Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Explored Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    Properties of Quasar-Galaxy Associations and Gravitational Mesolensing by Halo Objects

    Get PDF
    A new catalog of 8382 close quasar-galaxy pairs is presented. The catalog was composed using published catalogs of quasars and active galactic nuclei containing 11358 objects, as well as the LEDA catalog of galaxies, which contains on the order of 100 thousand objects. The search for pairs was carried out in such a way that the linear distance between the galaxy and projected quasar does not exceed 150kpc. Based on these new data, the dependence of the number of pairs on a=z_G/z_Q is analysed, where z_G and z_Q are the redshifts of the galaxy and quasar, respectively, revealing an excess of pairs with a<0.1 and a>0.9. This means that the galaxies in pairs are preferably located close to either the observer or the quasar and avoid intermediate distances along the line of sight to the quasar. Computer simulations demonstrate that it is not possible to explain this number of pairs with the observed distribution in a as the result of chance positional coincidences with a uniform spatial distribution of galaxies. Data on globular clusters show that the excess of pairs with a0.9 is consistent with the hypothesis that we are observing distant compact objects that are strongly gravitationally lensed by transparent lenses with a King mass distribution located in the halos of nearby galaxies. The Hubble diagram for galaxies and quasars is presented. Observational tests of the mesolensing hypothesis are formulated.Comment: 11 pages, 7 figure

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    Molecular Gas, Dust and Star Formation in the Barred Spiral NGC 5383

    Full text link
    We present multi-wavelength (interferometer and single-dish CO J=1-0, Halpha, broadband optical and near-infrared) observations of the classic barred spiral NGC 5383. We compare the observed central gas and dust morphology to the predictions of recent hydrodynamic simulations. In the nuclear region, our observations reveal three peaks lying along a S-shaped gas and dust distribution. In contrast, the model predicts a circumnuclear ring, not the observed S-shaped distribution; moreover, the predicted surface density contrast between the central gas accumulation and the bar dust lanes is an order of magnitude larger than observed. The discrepancies are not due to unexplored model parameter space or a nuclear bar but are probably due to the vigorous (7 solar masses per year) star formation activity in the center. As is common in similar bars, the star formation rate in the bar between the bar ends and the central region is low (~0.5 solar masses per yr), despite the high gas column density in the bar dust lanes; this is generally attributed to shear and shocks. We note a tendency for the HII regions to be associated with the spurs feeding the main bar dust lanes, but these are located on the leading side of the bar. We propose that stars form in the spurs, which provide a high column density but low shear environment. HII regions can therefore be found even on the leading side of the bar because the ionizing stars pass ballistically through the dust laneComment: Accepted for publication in The Astrophysical Journal, 33 pages (includes 10 figures

    Testing the role of SNe Ia for galactic chemical evolution of p-nuclei with two-dimensional models and with s-process seeds at different metallicities

    Get PDF
    Date of Acceptance: 07/11/2014The bulk of p isotopes is created in the "gamma processes" mainly by sequences of photodisintegrations and beta decays in explosive conditions in Type Ia supernovae (SNIa) or in core collapse supernovae (ccSN). The contribution of different stellar sources to the observed distribution of p-nuclei in the solar system is still under debate. We explore single degenerate Type Ia supernovae in the framework of two-dimensional SNIa delayed-detonation explosion models. Travaglio et al. discussed the sensitivity of p-nuclei production to different SNIa models, i.e., delayed detonations of different strength, deflagrations, and the dependence on selected s-process seed distributions. Here we present a detailed study of p-process nucleosynthesis occurring in SNIa with s-process seeds at different metallicities. Based on the delayed-detonation model DDT-a of TRV11, we analyze the dependence of p-nucleosynthesis on the s-seed distribution obtained from different strengths of the 13C pocket. We also demonstrate that 208Pb seed alone changes the p-nuclei production considerably. The heavy-s seeds (140 ≤A < 208) contribute with about 30%-40% to the total light-p nuclei production up to 132Ba (with the exception of 94Mo and 130Ba, to which the heavy-s seeds contribute with about 15% only). Using a Galactic chemical evolution code from Travaglio et al., we study the contribution of SNIa to the solar stable p-nuclei. We find that explosions of Chandrasekhar-mass single degenerate systems produce a large amount of p-nuclei in our Galaxy, both in the range of light (A ≤ 120) and heavy p-nuclei, at almost flat average production factors (within a factor of about three). We discussed in details p-isotopes such as 94Mo with a behavior diverging from the average, which we attribute to uncertainties in the nuclear data or in SNIa modeling. Li et al. find that about 70% of all SNeIa are normal events. If these are explained in the framework of explosions of Chandrasekhar-mass white dwarfs resulting from the single-degenerate progenitor channel, we find that they are responsible for at least 50% of the p-nuclei abundances in the solar system.Peer reviewedFinal Accepted Versio
    corecore