95 research outputs found
Escape rate of an active Brownian particle over a potential barrier
We study the dynamics of an active Brownian particle with a nonlinear
friction function located in a spatial cubic potential. For strong but finite
damping, the escape rate of the particle over the spatial potential barrier
shows a nonmonotonic dependence on the noise intensity. We relate this behavior
to the fact that the active particle escapes from a limit cycle rather than
from a fixed point and that a certain amount of noise can stabilize the sojourn
of the particle on this limit cycle
Steering the potential barriers: entropic to energetic
We propose a new mechanism to alter the nature of the potential barriers when
a biased Brownian particle under goes a constrained motion in narrow, periodic
channel. By changing the angle of the external bias, the nature of the
potential barriers changes from purely entropic to energetic which in turn
effects the diffusion process in the system. At an optimum angle of the bias,
the nonlinear mobility exhibits a striking bell-shaped behavior. Moreover, the
enhancement of the scaled effective diffusion coefficient can be efficiently
controlled by the angle of the bias. This mechanism enables the proper design
of channel structures for transport of molecules and small particles. The
approximative analytical predictions have been verified by precise Brownian
dynamic simulations.Comment: (6 pages, 7 figures) Submitted to PR
Controlling diffusive transport in confined geometries
We analyze the diffusive transport of Brownian particles in narrow channels
with periodically varying cross-section. The geometrical confinements lead to
entropic barriers, the particle has to overcome in order to proceed in
transport direction. The transport characteristics exhibit peculiar behaviors
which are in contrast to what is observed for the transport in potentials with
purely energetic barriers. By adjusting the geometric parameters of the channel
one can effectively tune the transport and diffusion properties. A prominent
example is the maximized enhancement of diffusion for particular channel
parameters. The understanding of the role of channel-shape provides the
possibility for a design of stylized channels wherein the quality of the
transport can be efficiently optimized.Comment: accepted for publication in Acta Physica Polonica
Entropic stochastic resonance: the constructive role of the unevenness
We demonstrate the existence of stochastic resonance (SR) in confined systems
arising from entropy variations associated to the presence of irregular
boundaries. When the motion of a Brownian particle is constrained to a region
with uneven boundaries, the presence of a periodic input may give rise to a
peak in the spectral amplification factor and therefore to the appearance of
the SR phenomenon. We have proved that the amplification factor depends on the
shape of the region through which the particle moves and that by adjusting its
characteristic geometric parameters one may optimize the response of the
system. The situation in which the appearance of such entropic stochastic
resonance (ESR) occurs is common for small-scale systems in which confinement
and noise play an prominent role. The novel mechanism found could thus
constitute an important tool for the characterization of these systems and can
put to use for controlling their basic properties.Comment: 8 pages, 8 figure
Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria
We study biased, diffusive transport of Brownian particles through narrow,
spatially periodic structures in which the motion is constrained in lateral
directions. The problem is analyzed under the perspective of the Fick-Jacobs
equation which accounts for the effect of the lateral confinement by
introducing an entropic barrier in a one dimensional diffusion. The validity of
this approximation, being based on the assumption of an instantaneous
equilibration of the particle distribution in the cross-section of the
structure, is analyzed by comparing the different time scales that characterize
the problem. A validity criterion is established in terms of the shape of the
structure and of the applied force. It is analytically corroborated and
verified by numerical simulations that the critical value of the force up to
which this description holds true scales as the square of the periodicity of
the structure. The criterion can be visualized by means of a diagram
representing the regions where the Fick-Jacobs description becomes inaccurate
in terms of the scaled force versus the periodicity of the structure.Comment: 20 pages, 7 figure
Hydrodynamics of chiral squirmers
Many microorganisms take a chiral path while swimming in an ambient fluid. In this paper we study the combined behavior of two chiral swimmers using the well-known squirmer model taking into account chiral asymmetries. In contrast to the simple squirmer model, which has an axisymmetric distribution of slip velocity, the chiral squirmer has additional asymmetries in the surface slip, which contribute to both translations and rotations of the motion. As a result, swimming trajectories can become helical and chiral asymmetries arise in the flow patterns. We study the swimming trajectories of a pair of chiral squirmers that interact hydrodynamically. This interaction can lead to attraction and repulsion, and in some cases even to bounded states where the swimmers continue to periodically orbit around a common average trajectory. Such bound states are a signature of the chiral nature of the swimmers. Our study could be relevant to the collective movements of ciliated microorganisms
Double Entropic Stochastic Resonance
We demonstrate the appearance of a purely entropic stochastic resonance (ESR)
occurring in a geometrically confined system, where the irregular boundaries
cause entropic barriers. The interplay between a periodic input signal, a
constant bias and intrinsic thermal noise leads to a resonant ESR-phenomenon in
which feeble signals become amplified. This new phenomenon is characterized by
the presence of two peaks in the spectral amplification at corresponding
optimal values of the noise strength. The main peak is associated with the
manifest stochastic resonance synchronization mechanism involving the
inter-well noise-activated dynamics while a second peak relates to a regime of
optimal sensitivity for intra-well dynamics. The nature of ESR, occurring when
the origin of the barrier is entropic rather than energetic, offers new
perspectives for novel investigations and potential applications. ESR by itself
presents yet another case where one constructively can harvest noise in driven
nonequilibrium systems.Comment: 6 pages, 7 figures ; Europhys. Lett., in press (2009
Entropic Stochastic Resonance
We present a novel scheme for the appearance of Stochastic Resonance when the
dynamics of a Brownian particle takes place in a confined medium. The presence
of uneven boundaries, giving rise to an entropic contribution to the potential,
may upon application of a periodic driving force result in an increase of the
spectral amplification at an optimum value of the ambient noise level. This
Entropic Stochastic Resonance (ESR), characteristic of small-scale systems, may
constitute a useful mechanism for the manipulation and control of
single-molecules and nano-devices.Comment: 4 pages, 3 figure
- …