2 research outputs found

    Proteomic and lipidomic analysis of primary mouse hepatocytes exposed to metal and metal oxide nanoparticles

    No full text
    The global analysis of the cellular lipid and protein content upon exposure to metal and metal oxide nanoparticles (NPs) can provide an overviewof the possible impact of exposure. Proteomic analysis has been applied to understand the nanoimpact however the relevance of the alterationon the lipidic proOle has been underestimated. In our study, primary mouse hepatocytes were treated with ultra-small (US) TiO2-USNPsas well as ZnO-NPs, CuO-NPs and Ag-NPs. e protein extracts were analysed by 2D-DIGE and quantiOed by imaging soPware and the selecteddi9erentially expressed proteins were identiOed by nLC-ESI-MS/MS. In parallel, lipidomic analysis of the samples was performed usingthin layer chromatography (TLC) and analyzed by imaging soPware. Our Ondings show an overall ranking of the nanoimpact at the cellularand molecular level: TiO2-USNPs<ZnO-NPs<Ag-NPs<CuO-NPs. CuO-NPs and Ag-NPs were cytotoxic while ZnO-NPs and CuO-NPs hadoxidative capacity. TiO2-USNPs did not have oxidative capacity and were not cytotoxic. e most common cellular impact of the exposurewas the down-regulation of proteins. e proteins identiOed were involved in urea cycle, lipid metabolism, electron transport chain, metabolismsignaling, cellular structure and we could also identify nuclear proteins. CuO-NPs exposure decreased phosphatidylethanolamine andphosphatidylinositol and caused down-regulation of electron transferring protein subunit beta. Ag-NPs exposure caused increased of totallipids and triacylglycerol and decrease of sphingomyelin. TiO2-USNPs also caused decrease of sphingomyelin as well as up-regulation of ATPsynthase and electron transferring protein alfa. ZnO-NPs a9ected the proteome in a concentration-independent manner with down-regulationof RNA helicase. ZnO-NPs exposure did not a9ect the cellular lipids. To our knowledge this work represents the Orst integrated proteomic andlipidomic approach to study the e9ect of NPs exposure to primary mouse hepatocytes in vitro

    Higher levels of serum uric acid influences hepatic damage in patients with non-alcoholic fatty liver disease (NAFLD)

    No full text
    [Background] recent evidence suggests a causal link between serum uric acid and the metabolic syndrome, diabetes mellitus, arterial hypertension, and renal and cardiac disease. Uric acid is an endogenous danger signal and activator of the inflammasome, and has been independently associated with an increased risk of cirrhosis.[Aim and methods] six hundred and thirty-four patients from the nation-wide HEPAMET registry with biopsy-proven NAFLD (53% NASH) were analyzed to determine whether hyperuricemia is related with advanced liver damage in patients with non-alcoholic fatty liver disease (NAFLD). Patients were divided into three groups according to the tertile levels of serum uric acid and gender.[Results] the cohort was composed of 50% females, with a mean age of 49 years (range 19-80). Patients in the top third of serum uric acid levels were older (p = 0.017); they had a higher body mass index (p < 0.01), arterial blood pressure (p = 0.05), triglyceridemia (p = 0.012), serum creatinine (p < 0.001) and total cholesterol (p = 0.016) and lower HDL-cholesterol (p = 0.004). According to the univariate analysis, the variables associated with patients in the top third were more advanced steatosis (p = 0.02), liver fibrosis (F2-F4 vs F0-1; p = 0.011), NASH (p = 0.002) and NAS score (p = 0.05). According to the multivariate logistic regression analysis, the top third of uric acid level was independently associated with steatosis (adjusted hazard ratio 1.7; CI 95%: 1.05-2.8) and NASH (adjusted hazard ratio 1.8; CI 95%: 1.08-3.0) but not with advanced fibrosis (F2-F4) (adjusted hazard ratio 1.09; CI 95%: 0.63-1.87).[Conclusion] higher levels of serum uric acid were independently associated with hepatocellular steatosis and NASH in a cohort of patients with NAFLD. Serum uric acid levels warrants further evaluation as a component of the current non-invasive NAFLD scores of histopathological damage.Peer reviewe
    corecore