1,279 research outputs found

    Modelling and control of a variable-length flexible beam on inspection ground robot

    Get PDF
    Stabilising an inverted pendulum on a cart is a well-known control problem. This paper proposes the mechanical and control design for solving the oscillation problem of a variable-length flexible beam mounted on a mobile robot. The system under consideration is the robot PovRob, used at the European Organization for Nuclear Research (CERN) for visual and remote inspection tasks of particle accelerators. The flexible beam mounted on the robot houses cameras and sensors. The innovative aspect of the approach concerns the use of actuated masses mounted at the end of the rod, which induces an impulsive moment due to their inertia and angular acceleration. The modelling of the flexible rod has been suitably simplified in a lumped-parameter system, with dynamic parameters related to the rod’s flexibility. A linearisation of the dynamic model allows a linear-quadratic control to stabilise the system. Experimental results support the identification and the validation of the dynamic model, while simulation results evaluate the performances of the designed control law

    Preoperative staging of colorectal cancer using virtual colonoscopy: correlation with surgical results

    Get PDF
    The aim of this study was to evaluate the clinical usefulness of computed tomography colonography (CTC) in the preoperative staging in patients with abdominal pain for occlusive colorectal cancer (CRC) and to compare the results of CTC with the surgical ones

    Oxidative stress as a primary risk factor for brain damage in preterm newborns

    Get PDF
    The risk of oxidative stress is high in preterm newborns. Room air exposure of an organism primed to develop in a hypoxic environment, lacking antioxidant defenses, and subjected to hyperoxia, hypoxia, and ischemia challenges the newborn with oxidative stress production. Free radicals can be generated by a multitude of other mechanisms, such as glutamate excitotoxicity, excess free iron, inflammation, and immune reactions. Free radical-induced damage caused by oxidative stress appears to be the major candidate for the pathogenesis of most of the complications of prematurity, brain being especially at risk, with short to long-term consequences. We review the role of free radical oxidative damage to the newborn brain and propose a mechanism of oxidative injury, taking into consideration the particular maturation-dependent vulnerability of the oligodendrocyte precursors. Prompted by our observation of an increase in plasma Adenosine concentrations significantly associated with brain white matter lesions in some premature infants, we discuss a possible bioenergetics hypothesis, correlated to the oxidative challenge of the premature infant. We aim at explaining both the oxidative stress generation and the mechanism promoting the myelination disturbances. Being white matter abnormalities among the most common lesions of prematurity, the use of Adenosine as a biomarker of brain damage appears promising in order to design neuroprotective strategies

    Pre-surgery urine metabolomics may predict late neurodevelopmental outcome in children with congenital heart disease

    Get PDF
    Background: From fetal life until cardiac surgery, complex congenital heart diseases (CHD) exhibit different hemodynamic and oxygenation patterns that can lead to alteration of the metabolic profile. We used a metabolomic approach to identify urine metabolic markers before cardiac surgery, aiming to define the physiology of patients with complex CHD and to contribute to predict their neurodevelopmental outcome. Methods: In a prospective, observational, single-center study we enrolled 28 patients with complex biventricular and univentricular CHD aged less than 5 years, on stable hemodynamic conditions, and with no genetic anomalies. We analyzed urine samples, collected at the induction of anesthesia, by 1H NMR spectroscopy. Profiles of 1H NMR spectra were submitted to unsupervised (principal component) and supervised (partial least squares-discriminant) multivariate analysis. Neurodevelopment was assessed by neuropsychological and adaptive functioning testing. Results: Principal components analysis divided CHD patients metabolic profiles in two distinct clusters (RED and BLACK). Metabolic profiles belonging to the RED cluster showed higher levels of accumulation of citric acid cycle intermediates and glucose compared to the profiles in the BLACK cluster, indicating a possible switching to anaerobic metabolism. Patients belonging to the RED cluster were significantly more prone to show an adverse neurodevelopment pattern (p = 0.01). Conclusions: The application of metabolomic analysis to CHD children permitted a deeper insight on their metabolic status that could help to obtain a better understanding of the physiological implications and to predict long-term neurodevelopmental outcome. © 201

    Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity

    Get PDF
    Graphene-based materials represent a useful tool for the realization of novel neural interfaces. Several studies have demonstrated the biocompatibility of graphene-based supports, but the biological interactions between graphene and neurons still pose open questions. In this work, the influence of graphene films with different characteristics on the growth and maturation of primary cortical neurons is investigated. Graphene films are grown by chemical vapor deposition progressively lowering the temperature range from 1070 to 650 °C to change the lattice structure and corresponding electrical conductivity. Two graphene-based films with different electrical properties are selected and used as substrate for growing primary cortical neurons: i) highly crystalline and conductive (grown at 1070 °C) and ii) highly disordered and 140-times less conductive (grown at 790 °C). Electron and fluorescence microscopy imaging reveal an excellent neuronal viability and the development of a mature, structured, and excitable network onto both substrates, regardless of their microstructure and electrical conductivity. The results underline that high electrical conductivity by itself is not fundamental for graphene-based neuronal interfaces, while other physico–chemical characteristics, including the atomic structure, should be also considered in the design of functional, bio-friendly templates. This finding widens the spectrum of carbon-based materials suitable for neuroscience applications

    CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro 'patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca(2+)/calmodulin-dependent serine-threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies
    • …
    corecore