13 research outputs found
Correction: High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams
Correction for 'High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams' by Tianliang Zhai et al., Nanoscale, 2019, 11, 8835–8844
Efficacy Evaluation of Cu- and Ag-Based Antibacterial Treatments on Polypropylene Fabric and Comparison with Commercial Products
Filter masks are disposable devices intended to be worn in order to reduce exposure to potentially harmful foreign agents of 0.1–10.0 microns. However, to perform their function correctly, these devices should be replaced after a few hours of use. Because of this, billions of non-biodegradable face masks are globally discarded every month (3 million/minute). The frequent renewal of masks, together with the strong environmental impact of non-biodegradable plastic-based mask materials, highlights the need to find a solution to this emerging ecological problem. One way to reduce the environmental impact of masks, decrease their turnover, and, at the same time, increase their safety level is to make them able to inhibit pathogen proliferation and vitality by adding antibacterial materials such as silver, copper, zinc, and graphene. Among these, silver and copper are the most widely used. In this study, with the aim of improving commercial devices’ efficacy and eco-sustainability, Ag-based and Cu-based antibacterial treatments were performed and characterized from morphological, compositional, chemical–physical, and microbiological points of view over time and compared with the antibacterial treatments of selected commercial products. The results demonstrated the good distribution of silver and copper particles onto the surface of the masks, along with almost 100% antibacterial capabilities of the coatings against both Gram-positive and Gram-negative bacteria, which were still confirmed even after several washing cycles, thus indicating the good potential of the developed prototypes for mask application
Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins’ abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers’ efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs’ structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions
Mesoporous silica as carrier of antioxidant for food packaging materials
Mesoporous silicas have been long recognized as very promising materials for the preparation of drug delivery systems. In this work SBA-15 mesoporous silica has been functionalized with amino-silane to be used as carrier of antioxidant compound in the preparation of active food packaging materials exhibiting tailored release properties. Active films have been prepared by loading the antioxidant tocopherol, the purely siliceous SBA-15 and the aminofunctionalized SBA-15 loaded with tocopherol into LDPE matrix trough a two-step process (mixing+extrusion). The aim of the present work is the study of the effect of the pore size and of the chemical functionality of the internal walls of the mesophase on the migration of tocopherol from active LDPE polymer films. Moreover, it has been proved that the addition of the active compound do not worsen the properties of the film such as optical characteristic and water vapor permeability, thus leading to the development of a material which could be favorably used mainly, but not exclusively, in the sector of food packagin
alfa-Tocopherol release from active polymer films loaded with functionalized SBA-15 mesoporous silica
The aim of the present work is the study of the migration from active LDPE polymer films of α-tocopherol adsorbed onto purely siliceous and amino-functionalized SBA-15 mesoporous silica. In particular, the effect of the pore size and the chemical functionality of the internal walls of the mesophase was thoroughly investigated. Co-condensation of tetraethylorthosilicate and aminopropyltriethoxysilane was exploited to bind amino groups on the pore surface of SBA-15. The synthesized mesoporous powders were characterized by means of X-ray diffraction and N 2 adsorption/desorption at 77 K. Powders loaded with tocopherol were characterized by infrared spectroscopy and thermogravimetric analysis. Results show that the maximum of the pore size distribution reduces from 90 Å for purely siliceous SBA-15 to 73 Å for amino-functionalized SBA-15. Infrared analysis shows that tocopherol interacts with the amino groups of functionalized SBA-15. Migration tests were performed at 25 °C, using 96% v/v ethanol as fatty food simulant, on both polymer films containing about 1% wt/wt of free tocopherol and about 3% wt/wt of tocopherol loaded onto purely siliceous and amino-functionalized SBA-15. The tocopherol diffusivity of films containing functionalized mesoporous silica decreased of about 60% with respect to films containing free tocopherol. This is due to the decrease in the pore size and to the increase in diffusion resistance caused by the functionalization of the internal pore walls with the amino groups. Moreover, the oxygen radical absorbing capacity assay of the produced active polymer films proved the antioxidant effectiveness of tocopherol released from samples after manufacturing process
Effect of modified atmosphere and active packaging on the shelf-life of fresh bluefin tuna fillets
The aim of this work was to study the influence of the combined use of MAP and antioxidant-based active packaging on the shelf-life of fresh bluefin tuna fillets stored at 3 °C. Active packaging films were produced by embedding α-tocopherol into an unstabilized low density polyethylene (LDPE) matrix at three concentrations (0.1%, 0.5%, 1%). α-Tocopherol release kinetics, in vitro antioxidant activity, oxygen permeability and crystallinity degree were determined to characterize the film. Preliminary shelf-life tests were performed to select critical quality indices, the best gas composition and the best α-tocopherol concentrations in the active film. Then, the effectiveness of the chosen active packaging film in combination with MAP was assessed by monitoring critical quality indices of fresh bluefin tuna fillet during storage at 3 °C for 18 days. Obtained results showed that (i) 100% N2 atmosphere has a protective effect on haemoglobin and lipid oxidation processes monitored, (ii) active film is able to reduce fat oxidation, (iii) the combined effect of MAP and active packaging can be considered a valuable tool to increase the shelf-life of raw fish products
Chemical, Thermal, and Rheological Performance of Asphalt Binder Containing Plastic Waste
In order to meet the environmental needs caused by large plastic waste accumulation, in the road construction sector, an effort is being made to integrate plastic waste with the function of polymer into asphalt mixtures; with the purpose of improving the mechanical performance of the pavement layers. This study focuses on the effect of a recycled mixture of plastic waste on the chemical, thermal, and rheological properties of designed asphalt blends and on the identification of the most suitable composition blend to be proposed for making asphalt mixture through a dry modification method. Thermo-gravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis were carried out to investigate the effect of various concentrations and dimensions of plastic waste (PW) on the neat binder (NB). The frequency sweep test and the multiple stress creep and recovery test were performed to analyze the viscoelastic behavior of the asphalt blends made up of PW in comparison with NB and a commercial modified bitumen (MB). It has been observed that the presence of various types of plastic materials having different melting temperatures does not allow a total melting of PW powder at the mixing temperatures. However, the addition of PW in the asphalt blend significantly improved the aging resistance without affecting the oxidation process of the plastic compound present in the asphalt blend. Furthermore, when the asphalt blend mixed with 20% PW by the weight of bitumen is adopted into the asphalt mixture as polymer, it improves the elasticity and strengthens the mixture better than the mixture containing MB
Trends in the use of natural antioxidants in active food packaging: a review
The demand for natural antioxidant active packaging is increasing due to its unquestionable advantages compared with the addition of antioxidants directly to the food. Therefore, the search for antioxidants perceived as natural, namely those that naturally occur in herbs and spices, is a field attracting great interest. In line with this, in the last few years, natural antioxidants such as -tocopherol, caffeic acid, catechin, quercetin, carvacrol and plant extracts (e.g. rosemary extract) have been incorporated into food packaging. On the other hand, consumers and the food industry are also interested in active biodegradable/compostable packaging and edible films to reduce environmental impact, minimise food loss and minimise contaminants from industrial production and reutilisation by-products. The present review focuses on the natural antioxidants already applied in active food packaging, and it reviews the methods used to determine the oxidation protection effect of antioxidant active films and the methods used to quantify natural antioxidants in food matrices or food simulants. Lastly consumers' demands and industry trends are also addressed.Tania Albuquerque is grateful for a research grant [grant number BRJ/DAN-2012] funded by the National Institute of Health Dr Ricardo Jorge, I. P. This work was supported by Project Number PTDC/AGR-TEC/3366/2012 with the acronym Rose4Pack (Biodegradable active packaging with rosemary extract (Rosmarinus officinalis L.) to improve food shelf life) and funded by the Foundation for Science and Technology (FCT) and COMPETE Programme [grant number FCOMP-01-0124-FEDER-028015]