2,622 research outputs found
Towards Building Deep Networks with Bayesian Factor Graphs
We propose a Multi-Layer Network based on the Bayesian framework of the
Factor Graphs in Reduced Normal Form (FGrn) applied to a two-dimensional
lattice. The Latent Variable Model (LVM) is the basic building block of a
quadtree hierarchy built on top of a bottom layer of random variables that
represent pixels of an image, a feature map, or more generally a collection of
spatially distributed discrete variables. The multi-layer architecture
implements a hierarchical data representation that, via belief propagation, can
be used for learning and inference. Typical uses are pattern completion,
correction and classification. The FGrn paradigm provides great flexibility and
modularity and appears as a promising candidate for building deep networks: the
system can be easily extended by introducing new and different (in cardinality
and in type) variables. Prior knowledge, or supervised information, can be
introduced at different scales. The FGrn paradigm provides a handy way for
building all kinds of architectures by interconnecting only three types of
units: Single Input Single Output (SISO) blocks, Sources and Replicators. The
network is designed like a circuit diagram and the belief messages flow
bidirectionally in the whole system. The learning algorithms operate only
locally within each block. The framework is demonstrated in this paper in a
three-layer structure applied to images extracted from a standard data set.Comment: Submitted for journal publicatio
Hamiltonian of a spinning test-particle in curved spacetime [Erratum: Phys. Rev. D 80, 104025 (2009)]
Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test-particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase-space algebra in the Newton-Wigner spin supplementary condition (SSC), suitably generalized to curved spacetime, and find that the phase-space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian computed in PN theory in the test-particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test-particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order
Gravitational waves from inspiraling binary black holes
Binary black holes are the most promising candidate sources for the first
generation of earth-based interferometric gravitational-wave detectors. We
summarize and discuss the state-of-the-art analytic techniques developed during
the last years to better describe the late dynamical evolution of binary black
holes of comparable masses.Comment: References added and updated; few typos correcte
Final spin of a coalescing black-hole binary: an Effective-One-Body approach
We update the analytical estimate of the final spin of a coalescing
black-hole binary derived within the Effective-One-Body (EOB) approach. We
consider unequal-mass non-spinning black-hole binaries. It is found that a more
complete account of relevant physical effects (higher post-Newtonian accuracy,
ringdown losses) allows the {\it analytical} EOB estimate to `converge towards'
the recently obtained {\it numerical} results within 2%. This agreement
illustrates the ability of the EOB approach to capture the essential physics of
coalescing black-hole binaries. Our analytical approach allows one to estimate
the final spin of the black hole formed by coalescing binaries in a mass range
() which is not presently covered by numerical
simulations.Comment: 8 pages, two figures. To appear in Phys. Rev.
Fourth post-Newtonian effective-one-body Hamiltonians with generic spins
In a compact binary coalescence, the spins of the compact objects can have a significant effect on the orbital motion and gravitational-wave (GW) emission. For generic spin orientations, the orbital plane precesses, leading to characteristic modulations of the GW signal. The observation of precession effects is crucial to discriminate among different binary formation scenarios, and to carry out precise tests of General Relativity. Here, we work toward an improved description of spin effects in binary inspirals, within the effective-one-body (EOB) formalism, which is commonly used to build waveform models for LIGO and Virgo data analysis. We derive EOB Hamiltonians including the complete fourth post-Newtonian (4PN) conservative dynamics, which is the current state of the art. We place no restrictions on the spin orientations or magnitudes, or on the type of compact object (e.g., black hole or neutron star), and we produce the first generic-spin EOB Hamiltonians complete at 4PN order. We consider multiple spinning EOB Hamiltonians, which are more or less direct extensions of the varieties found in previous literature, and we suggest another simplified variant. Finally, we compare the circular-orbit, aligned-spin binding-energy functions derived from the EOB Hamiltonians to numerical-relativity simulations of the late inspiral. While finding that all proposed Hamiltonians perform reasonably well, we point out some interesting differences, which could guide the selection of a simpler, and thus faster-to-evolve EOB Hamiltonian to be used in future LIGO and Virgo inference studies
Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors
The uncertainty principle, applied naively to the test masses of a
laser-interferometer gravitational-wave detector, produces a Standard Quantum
Limit (SQL) on the interferometer's sensitivity. It has long been thought that
beating this SQL would require a radical redesign of interferometers. However,
we show that LIGO-II interferometers, currently planned for 2006, can beat the
SQL by as much as a factor two over a bandwidth \Delta f \sim f, if their
thermal noise can be pushed low enough. This is due to dynamical correlations
between photon shot noise and radiation-pressure noise, produced by the LIGO-II
signal-recycling mirror.Comment: 12 pages, 2 figures; minor changes, some references adde
Quantum Inhomogeneities in String Cosmology
Within two specific string cosmology scenarios --differing in the way the
pre- and post-big bang phases are joined-- we compute the size and spectral
slope of various types of cosmologically amplified quantum fluctuations that
arise in generic compactifications of heterotic string theory. By further
imposing that these perturbations become the dominant source of energy at the
onset of the radiation era, we obtain physical bounds on the background's
moduli, and discuss the conditions under which both a (quasi-) scale-invariant
spectrum of axionic perturbations and sufficiently large seeds for the galactic
magnetic fields are generated. We also point out a potential problem with
achieving the exit to the radiation era when the string coupling is near its
present value.Comment: 30 pages, RevteX, epsfig, 5 figure
- …