87 research outputs found

    TherMos3, a tool for 3D electrothermal simulation of Smart Power Mosfets

    Get PDF
    In this paper we report on a novel simulation tool designed for the 3D coupled electro-thermal simulation of Smart Power Mosfets, that is a tool capable of taking into account not only the electrical (and thermal) behaviour of the power device but also the different driving strategies as they are imposed by a control logic circuit which usually resides on the same chip. The simulator is fully developed under Matlab and solves, self consistently, the 3D heat equation with proper boundary conditions and heat sources. An adaptive meshing algorithm based on temperature gradients and an optimized time stepping strategy have also been developed to reduce computational load and speed up simulation time without loosing accuracy. To validate this approach, simulator results are finally compared to experimental data obtained on a commercial Smart Power device used in automotive applications.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Interaction signatures and non-Gaussian photon states from a strongly driven atomic ensemble coupled to a nanophotonic waveguide

    Get PDF
    We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide. The period of the chain and the orientation of the laser field can be chosen such that emission occurs predominantly into a single guided mode. We find that the fluorescence excitation line shape changes as the number of atoms is increased, eventually undergoing a splitting that provides evidence for the waveguide-mediated all-to-all interactions. Remarkably, in the regime of strong driving the light emitted into the waveguide is nonclassical with a significant negativity of the associated Wigner function. We show that both the emission properties and the non-Gaussian character of the light are robust against voids in the atom chain, enabling the experimental study of these effects with present-day technology. Our results offer a route towards novel types of fiber-coupled quantum light sources and an interesting perspective for probing the physics of interacting atomic ensembles through light

    Full Stark control of polariton states on a spin-orbit hypersphere

    Get PDF
    The orbital angular momentum and the polarization of light are physical quantities widely investigated for classical and quantum information processing. In this work we propose to take advantage of strong light-matter coupling, circular-symmetric confinement, and transverse-electric transverse-magnetic splitting to exploit states where these two degrees of freedom are combined. To this end we develop a model based on a spin-orbit Poincaré hypersphere. Then we consider the example of semiconductor polariton systems and demonstrate full ultrafast Stark control of spin-orbit states. Moreover, by controlling states on three different spin-orbit spheres and switching from one sphere to another we demonstrate the control of different logic bits within one single physical system

    The accuracy of NIRS in predicting chemical composition and fibre digestibility of hay-based total mixed rations

    Get PDF
    The aim of this study was to develop near-infrared spectroscopy (NIRS) prediction models for the estimation of chemical components and the fibre undegradable fractions (uNDF) of hay-based total mixed rations (TMR). A total of 205 TMR samples were used for the study. All the chemical components were measured using standard AOAC reference methods and expressed as percentages of dry matter (DM). Prediction models were developed using both cross- and independent validation and different mathematical treatments applied on spectral data. The best spectral treatment was chosen based on the method which simultaneously achieved the lowest root mean square error and the highest explained variance in cross-validation. The coefficient of determination in external validation (R2P) was the greatest for starch prediction model (R2P = 0.84), followed by acid detergent fibre (ADF; R2P = 0.79), and amylase-treated ash-corrected NDF with addition of sodium sulphite (aNDFom) and crude protein prediction models (CP; R2P = 0.73). The concordance correlation coefficient (CCC) in validation ranged from 0.66 (ash prediction model) to 0.92 (starch prediction model), indicating substantial to accurate models’ predictive ability. This study indicated that NIRS can be a screening method for the prediction of CP, Starch, aNDFom, ADF, acid detergent lignin (ADL), uNDF and Ash. The use of TMR utilised in various herds provided high variability for the NIRS calibration dataset, implying that the developed NIRS pre-diction models could be applicable to TMR collected from herds located in the Parmigiano Reggiano cheese production area.Highlights NIRS can be successfully employed to determine quickly and at cost-effective different compositional and digestibility traits in hay-based TMR. TMR analysis predicted by NIRS can support nutritionists in the formulation of diets containing a proper nutrient profile to sustain physiological, metabolic, and immunological processes. The use of NIR technology for TMR analysis can allow frequent monitoring of rations and increasingly timely corrections, maximising cows’ diet utilisation and conversion of the ingested feed

    Polariton Pattern Formation and Photon Statistics of the Associated Emission

    Get PDF
    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second order coherence g (2)(0) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations

    Intronic determinants coordinate charme lncRNA nuclear activity through the interaction with MATR3 and PTBP1

    Get PDF
    Chromatin architect of muscle expression (Charme) is a muscle-restricted long noncoding RNA (lncRNA) that plays an important role in myogenesis. Earlier evidence indicates that the nuclear Charme isoform, named pCharme, acts on the chromatin by assisting the formation of chromatin domains where myogenic transcription occurs. By combining RNA antisense purification (RAP) with mass spectrometry and loss-of-function analyses, we have now identified the proteins that assist these chromatin activities. These proteins—which include a sub-set of splicing regulators, principally PTBP1 and the multifunctional RNA/DNA binding protein MATR3—bind to sequences located within the alternatively spliced intron-1 to form nuclear aggregates. Consistent with the functional importance of pCharme interactome in vivo, a targeted deletion of the intron-1 by a CRISPR-Cas9 approach in mouse causes the release of pCharme from the chromatin and results in cardiac defects similar to what was observed upon knockout of the full-length transcript

    The evolving therapeutic landscape of trastuzumab-drug conjugates: Future perspectives beyond HER2-positive breast cancer

    Get PDF
    A novel class of drugs, antibody-drug conjugates (ADCs), are now rapidly emerging as highly effective treatments for solid tumours. ADCs conjugate conventional chemotherapeutics with highly selective targeted monoclonal antibodies. Anti-HER2 therapies selectively target cancer cells expressing human epidermal growth factor receptor 2 (HER2), among them trastuzumab has been the first HER2-targeting monoclonal antibody to achieve successful results that made it the backbone of anti-HER2 therapies. Trastuzumab drug conjugates (T-DCs), use trastuzumab as a selective antibody to lead cytotoxic drugs inside cancer cells. Trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-Dxd) are the two approved T-DCs. T-Dxd along with other five T-DCs represents “second generation ADCs” that has been firstly tested in HER2 positive breast cancer (BC) and then in HER2-low BC and other cancers showing promising results thanks to extraordinary and innovative pharmacokinetic and pharmacodynamic characteristics. The evidence generated so far are establishing them as a completely new class of agents effective in solid cancer treatments but also warrants physicians against unconventional toxicity profiles. The role of T-DCs in HER2-positive BC has been largely reviewed, while in this review, we provided for the first time in literature an overview of trastuzumab drug conjugates (T-DCs) approved and/or in clinical development with a specific focus on their efficacy and safety profile in HER2-low BC and other solid tumours different from BC. We started by analysing T-DCs biological characteristics that underly the differences in T-DCs pharmacodynamics and safety profile, then presented the main evidence on the activity and efficacy of these emerging T-DCs in HER2-low BC and other HER2 overexpressing and/or mutated solid tumours and lastly, we provided an overview of the complex and still evolving scenario in which these compounds should be allocated. A specific focus on possible combination strategies with other drugs such as immunotherapy, chemotherapy and target therapy, to increase T-DCs activity and eventually overcome future upcoming resistance mechanisms, are here also critically reviewed

    Effects of Bisphosphonate Treatment on Circulating Lipid and Glucose Levels in Patients with Metabolic Bone Disorders

    Get PDF
    Bisphosphonates are the first-choice treatment of osteoporosis and Paget’s disease of bone. Among the bisphosphonates, the non-amino-bisphosphonates, such as clodronic acid, are intracellular converted into toxic analogues of ATP and induce cellular apoptosis whereas the amino-bisphosphonates, such as zoledronic acid, inhibit the farnesyl-diphosphate-synthase, an enzyme of the mevalonate pathway. This pathway regulates cholesterol and glucose homeostasis and is a target for statins. In this retrospective cohort study, we evaluated the effects of an intravenous infusion of zoledronic acid (5 mg) or clodronic acid (1500 mg) on blood lipid (i.e. total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol and triglycerides) and glucose levels in patients with osteoporosis and Paget’s disease of bone. All patients were evaluated before, 1 and 6 months after bisphosphonate treatment. Pagetic and osteoporotic patients treated with zoledronic acid showed a significant reduction in glucose and atherogenic lipids during follow-up whereas these phenomena were not observed after clodronic treatment. The effect on circulating lipid levels was similar in naĂŻve and re-treated Pagetic patients. Zoledronic acid treatment was associated with a reduction in blood glucose and atherogenic lipids in patients with metabolic bone disorders. The extent of change was similar to that obtained with the regular assumption of a low-intensity statin. Further studies are warranted to better evaluate the clinical implications of these observations
    • …
    corecore