630 research outputs found

    Extrapolations of Lattice Meson Form Factors

    Full text link
    We use chiral perturbation theory to study the extrapolations necessary to make physical predictions from lattice QCD data for the electromagnetic form factors of pseudoscalar mesons. We focus on the quark mass, momentum, lattice spacing, and volume dependence and apply our results to simulations employing mixed actions of Ginsparg-Wilson valence quarks and staggered sea quarks. To determine charge radii at quark masses on the lattices currently used, we find that all extrapolations except the one to infinite volume make significant contributions to the systematic error.Comment: 14pp, discussion and Ref. added for disconnected diagram

    Molecular profiling of multiplexed gene markers to assess viability of ex vivo human colon explant cultures

    Get PDF
    © Janice E. Drew et al. 2015; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Acknowledgments The authors would like to thank the patients who kindly donated tissue samples, Sally Chalmers of the Tayside Tissue Bank for her help with collecting of the tissue donor samples, Emma Moss for advice on human colon dissection and explant culture, and Claus Dieter Mayer, Biomathematics and Statistics Scotland, for advice on statistical analysis. This work was supported by the Scottish Government (GT403), Scottish Universities Life Science Alliance, and TENOVUS Scotland.Peer reviewedPublisher PD

    An HI absorption distance to the black hole candidate X-ray binary MAXI J1535-571

    Full text link
    With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum from gas clouds along the line-of-sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the HI absorption spectra for MAXI J1535--571 and an extragalactic source in the same field of view are 69±4-69\pm4 km s1^{-1} and 89±4-89\pm4 km s1^{-1}, respectively. This rules out the far kinematic distance (9.30.6+0.59.3^{+0.5}_{-0.6} kpc), giving a most likely distance of 4.10.5+0.64.1^{+0.6}_{-0.5} kpc, with a strong upper limit of the tangent point at 6.70.2+0.16.7^{+0.1}_{-0.2} kpc. At our preferred distance, the peak unabsorbed luminosity of MAXI J1535--571 was >78>78 per cent of the Eddington luminosity, and shows that the soft-to-hard spectral state transition occurred at the very low luminosity of 1.2 -- 3.4 ×\times 105^{-5} times the Eddington luminosity. Finally, this study highlights the capabilities of new wide-field radio telescopes to probe Galactic transient outbursts, by allowing us to observe both a target source and a background comparison source in a single telescope pointing.Comment: Revised after favorable referee report from MNRAS Letter

    The UTMOST: A hybrid digital signal processor transforms the MOST

    Get PDF
    The Molonglo Observatory Synthesis Telescope (MOST) is an 18,000 square meter radio telescope situated some 40 km from the city of Canberra, Australia. Its operating band (820-850 MHz) is now partly allocated to mobile phone communications, making radio astronomy challenging. We describe how the deployment of new digital receivers (RX boxes), Field Programmable Gate Array (FPGA) based filterbanks and server-class computers equipped with 43 GPUs (Graphics Processing Units) has transformed MOST into a versatile new instrument (the UTMOST) for studying the dynamic radio sky on millisecond timescales, ideal for work on pulsars and Fast Radio Bursts (FRBs). The filterbanks, servers and their high-speed, low-latency network form part of a hybrid solution to the observatory's signal processing requirements. The emphasis on software and commodity off-the-shelf hardware has enabled rapid deployment through the re-use of proven 'software backends' for its signal processing. The new receivers have ten times the bandwidth of the original MOST and double the sampling of the line feed, which doubles the field of view. The UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan beams for dispersed single pulses. Although system performance is still sub-optimal, a pulsar timing and FRB search programme has commenced and the first UTMOST maps have been made. The telescope operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source, via feedback from real-time pulsar folding. The regular timing of over 300 pulsars has resulted in the discovery of 7 pulsar glitches and 3 FRBs. The UTMOST demonstrates that if sufficient signal processing can be applied to the voltage streams it is possible to perform innovative radio science in hostile radio frequency environments.Comment: 12 pages, 6 figure

    The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

    Get PDF
    We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.Comment: accepted for publication in PAS

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    Some Like it Hot: The X-Ray Emission of The Giant Star YY Mensae

    Full text link
    (Abridged abstract) We present an analysis of the X-ray emission of the rapidly rotating giant star YY Mensae observed by Chandra HETGS and XMM-Newton. Although no obvious flare was detected, the X-ray luminosity changed by a factor of two between the XMM-Newton and Chandra observations taken 4 months apart. The coronal abundances and the emission measure distribution have been derived from three different methods using optically thin collisional ionization equilibrium models. The abundances show an inverse first ionization potential (FIP) effect. We further find a high N abundance which we interpret as a signature of material processed in the CNO cycle. The corona is dominated by a very high temperature (20-40 MK) plasma, which places YY Men among the magnetically active stars with the hottest coronae. Lower temperature plasma also coexists, albeit with much lower emission measure. Line broadening is reported, which we interpret as Doppler thermal broadening, although rotational broadening due to X-ray emitting material high above the surface could be present as well. We use two different formalisms to discuss the shape of the emission measure distribution. The first one infers the properties of coronal loops, whereas the second formalism uses flares as a statistical ensemble. We find that most of the loops in the corona of YY Men have their maximum temperature equal to or slightly larger than about 30 MK. We also find that small flares could contribute significantly to the coronal heating in YY Men. Although there is no evidence of flare variability in the X-ray light curves, we argue that YY Men's distance and X-ray brightness does not allow us to detect flares with peak luminosities Lx <= 10^{31} erg/s with current detectors.Comment: Accepted paper to appear in Astrophysical Journal, issue Nov 10, 2004 (v615). This a revised version. Small typos are corrected. Figure 7 and its caption and some related text in Sct 7.2 are changed, without incidence for the conclusion

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response
    corecore