16 research outputs found

    β-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2

    Get PDF
    Recently, a requirement for β-arrestin–mediated endocytosis in the activation of extracellular signal–regulated kinases 1 and 2 (ERK1/2) by several G protein–coupled receptors (GPCRs) has been proposed. However, the importance of this requirement for function of ERK1/2 is unknown. We report that agonists of Gαq-coupled proteinase–activated receptor 2 (PAR2) stimulate formation of a multiprotein signaling complex, as detected by gel filtration, immunoprecipitation and immunofluorescence. The complex, which contains internalized receptor, β-arrestin, raf-1, and activated ERK, is required for ERK1/2 activation. However, ERK1/2 activity is retained in the cytosol and neither translocates to the nucleus nor causes proliferation. In contrast, a mutant PAR2 (PAR2δST363/6A), which is unable to interact with β-arrestin and, thus, does not desensitize or internalize, activates ERK1/2 by a distinct pathway, and fails to promote both complex formation and cytosolic retention of the activated ERK1/2. Whereas wild-type PAR2 activates ERK1/2 by a PKC-dependent and probably a ras-independent pathway, PAR2(δST363/6A) appears to activate ERK1/2 by a ras-dependent pathway, resulting in increased cell proliferation. Thus, formation of a signaling complex comprising PAR2, β-arrestin, raf-1, and activated ERK1/2 might ensure appropriate subcellular localization of PAR2-mediated ERK activity, and thereby determine the mitogenic potential of receptor agonists

    TGR5 agonists induce peripheral and central hypersensitivity to bladder distension

    Get PDF
    The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladderinnervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1−/− but not Trpa1−/− DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3β-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1−/− mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.Ashlee Caldwell, Luke Grundy, Andrea M. Harrington, Sonia Garcia, Caraballo, Joel Castro, Nigel W. Bunnett, Stuart M. Brierle

    Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling

    Get PDF
    Differential regulation of the μ-opioid receptor (MOR), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, contributes to the clinically limiting effects of opioid analgesics, such as morphine. We used biophysical approaches to quantify spatiotemporal MOR signaling in response to different ligands. In human embryonic kidney (HEK) 293 cells over-expressing MOR, morphine caused a Gβγ-dependent increase in plasma membrane-localized protein kinase C (PKC) activity, which resulted in a restricted distribution of MOR within the plasma membrane and induced sustained cytosolic extracellular signal-regulated kinase (ERK) signaling. In contrast, the synthetic opioid peptide DAMGO ([D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin) enabled receptor redistribution within the plasma membrane, resulting in transient increases in cytosolic and nuclear ERK activity, and, subsequently, receptor internalization. When Gβγ subunits or PKCα activity was inhibited or when the carboxyl-terminal phosphorylation sites of MOR were mutated, morphine-activated MOR was released from its restricted plasma membrane localization and stimulated a transient increase in cytosolic and nuclear ERK activity in the absence of receptor internalization. Thus, these data suggest that the ligand-induced redistribution of MOR within the plasma membrane, and not its internalization, controls its spatiotemporal signaling

    Activation of pruritogenic TGR5, MRGPRA3, and MRGPRC11 on colon-innervating afferents induces visceral hypersensitivity

    Get PDF
    Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MRGPRA3, or MRGPRC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MRGPRX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders. - 2019 American Society for Clinical Investigation. All rights reserved.Work was supported by a National Health and Medical Research Council of Australia (NHMRC) Project Grant (1083480 to SMB and DPP), an NHMRC R.D. Wright Biomedical Research Fellow (APP1126378 to SMB), and an Australian Research Council (ARC) Discovery Early Career Research Award (DE130100223 to AMH). NWB was supported by grants from the NIH (NS102722; DE026806; DK118971) and the US Department of Defence (W81XWH1810431).Scopu

    Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.

    No full text
    Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases
    corecore