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Abstract 

Differential regulation of the µ-opioid receptor (MOPr) contributes to the clinically limiting effects of opioid 

analgesics, such as morphine. However, whether differential regulation of MOPr impacts on the spatiotemporal 

characteristics of receptor activation is unclear. Here we used biophysical approaches to quantify MOPr 

spatiotemporal signaling. Morphine caused a Gbg-dependent increase in membrane-localized PKC activity, 

which restricted the distribution of MOPr within the plasma membrane and induced sustained cytosolic 

extracellular signal-regulated kinase (ERK). In contrast, DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin) 

allowed receptor redistribution, transient increases in cytosolic and nuclear ERK, and then receptor 

internalization. Following inhibition of Gbg-subunits, PKCa or mutation of a key phosphorylation site, the 

morphine-activated MOPr is released from its restricted localization and stimulates a transient increase in 

cytosolic and nuclear ERK in the absence of b-arrestin recruitment and internalization. Thus, ligand-induced 

redistribution of MOPr at the plasma membrane, and not internalization, controls its spatiotemporal signaling.  



3 

Introduction 

G protein-coupled receptors (GPCRs) are the largest family of cell surface signaling proteins encoded by the 

human genome. They allow cells to respond to structurally diverse endogenous and environmental signals, and 

are the target of over 30% of marketed drugs. It is increasingly recognized that the uniform elevation of second 

messengers throughout the cell cannot explain the diversity of GPCR-mediated effects. Rather, spatial (location) 

and temporal (duration) control of signaling plays an important role (1, 2). Spatial compartmentalization of 

signaling can be achieved by the formation of GPCR-dependent protein complexes, which ultimately restrict 

second messenger diffusion to induce extremely localized signals (3). In addition, multiple regulatory 

mechanisms (including receptor phosphorylation, desensitization and internalization) control the duration of 

GPCR activation. Therefore, the spatial and temporal distribution of both receptors and signaling effectors are 

critical for the generation of distinct and highly specialized GPCR-mediated responses. 

 

The  µ-opioid receptor (MOPr) has been extensively studied due to its physiological importance in mediating the 

effects of endogenous opioids, and its prominence as the target of opioid analgesics, such as morphine. Despite 

this, chronic use of opioid analgesics is still clinically limited by the development of tolerance, addiction, 

constipation and respiratory depression (4). At a cellular level, stimulation of MOPr by all opioids activates the 

same G protein-dependent signaling pathways. MOPr activates Gai/o proteins leading to an inhibition of cAMP, 

increased ERK phosphorylation, activation of G protein-regulated inwardly rectifying potassium channels, and 

inhibition of voltage-gated calcium channels (5). However, different MOPr agonists induce distinct patterns of 

receptor regulation and internalization. In particular, morphine causes limited receptor phosphorylation and b-

arrestin recruitment, which results in compromised receptor internalization and resensitization (6-10). These 

observations have prompted intensive studies of the ability of MOPr ligands to differentially activate G proteins 

and b-arrestins, in an effort to explain their divergent biological effects (11-13). 

 

It is now apparent that the spatiotemporal characteristics of a signal can specify the outcome of receptor 

activation (1, 2). Most opioids, including morphine, elicit cytosolic ERK phosphorylation (14-16). However, 
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unlike other opioids, morphine is unable to promote nuclear ERK phosphorylation (15). Taken together with its 

impaired internalization of MOPr, this suggests that morphine may stimulate a unique spatiotemporal cellular 

response. To investigate this, we used complimentary biophysical techniques and super-resolution microscopy. 

We report that morphine and DAMGO activate distinct spatial and temporal signaling profiles that are controlled 

by the plasma membrane localization of MOPr induced by the two ligands. Subcellular-targeted Förster 

Resonance Energy Transfer (FRET) biosensors showed that only morphine stimulation of MOPr induced 

sustained cytosolic ERK and plasma membrane-localized PKC activation, which restricted MOPr localization. In 

contrast, DAMGO caused MOPr redistribution within the plasma membrane and transient activation of cytosolic 

and nuclear ERK. Thus, not only do morphine and DAMGO stimulate different signaling pathways, they 

activate signals in distinct subcellular compartments with unique temporal profiles. Importantly, we can alter the 

spatiotemporal signaling profile of morphine to mimic that of DAMGO, by allowing redistribution of MOPr 

within the plasma membrane in the absence of b-arrestin recruitment or receptor internalization. Thus, receptor 

localization within the plasma membrane determines the spatiotemporal signals activated by MOPr in response 

to different ligands.  
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Results 

Ligand-dependent spatiotemporal signaling of MOPr 

To gain spatial and temporal resolution of MOPr signaling in live cells, we used FRET biosensors for ERK and 

PKC (EKAR and CKAR, respectively) localized to different subcellular compartments (17, 18). In HEK293 

cells co-transfected with MOPr and either a cytosolic or nuclear ERK biosensor (cytoEKAR, nucEKAR), EC50 

concentrations of DAMGO (10 nM) or morphine (100 nM; fig. S1A) caused distinct temporal ERK profiles. 

DAMGO caused a transient increase in cytosolic ERK, whereas morphine induced a sustained increase (Fig. 1, 

A and B). Moreover, only DAMGO caused a transient increase in nuclear ERK (Fig. 1, C and D). Ligand-

dependent responses were also observed when assessing direct activation of PKC. In cells co-transfected with 

MOPr and a plasma membrane PKC biosensor (pmCKAR) only morphine caused a sustained increase in PKC 

activity (Fig. 1E). DAMGO did not affect plasma membrane PKC activity, even at maximal concentrations (1 

µM; fig. S1B), and neither ligand affected cytosolic PKC (Fig. 1F). 

 

The distinct internalization profiles of MOPr in response to DAMGO and morphine (6, 10), were quantified 

using a Bioluminescence Resonance Energy Transfer (BRET) assay that detects the proximity between BRET 

partners in defined subcellular compartments in live cells (19, 20). In agreement with previous reports, 

incubation with DAMGO (1 µM, fig. S2A) induced MOPr internalization as shown by the increase in the BRET 

signal between a Renilla luciferase-tagged MOPr (MOPr-RLuc) and a Venus-tagged marker of early endosomes 

(Rab5a-Venus) (Fig. 2A). In contrast, morphine produced no detectable change in BRET (Fig. 2A and fig. S2B). 

These results were validated by automated, high-content image analysis (fig. S2C). DAMGO-mediated MOPr 

endocytosis was unaffected by Gai/o inhibition using NF023 or pertussis toxin (PTx) (21, 22) but was abolished 

by the clathrin-dependent endocytosis inhibitor PitStop2 (23), expression of a dominant negative dynamin 

(K44E) (24) or by knockdown of b-arrestins (combined b-arrestin-1 and b-arrestin-2 siRNA; Fig. 2, A and B 

and fig. S2, D to H). This shows that b-arrestin recruitment and MOPr endocytosis are independent of Gai/o 

coupling.  
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Previous studies have linked activation of PKC to cytosolic ERK, and b-arrestin to increased nuclear ERK, to 

conclude that G protein- and b-arrestin-dependent pathways activate distinct ERK signaling (15). By inhibiting 

Gai/o proteins, we now directly demonstrate that cytosolic ERK in response to DAMGO and morphine is 

dependent on Gai/o (Fig. 2C). In agreement with previous studies, cytosolic ERK was unaffected by knockdown 

of b-arrestins (Fig. 2C). However, inhibition of receptor endocytosis by PitStop2 or dynamin K44E transformed 

the profile of DAMGO-induced cytosolic ERK from a transient to a sustained signal, consistent with MOPr 

retention at the plasma membrane (Fig. 2D and fig. S2, I and J). As expected, the increase in nuclear ERK in 

response to DAMGO was dependent on b-arrestins and receptor internalization (Fig. 2, E and F). 

 

Thus, our results show that Gai/o activation by MOPr mediates increases in cytosolic ERK in response to 

DAMGO and morphine, and confirm that the increases in nuclear ERK in response to DAMGO are dependent 

on b-arrestins and receptor endocytosis. 

 

PKC activation controls the ERK spatiotemporal profile of morphine  

Inhibition of Gai/o (NF023 or PTx) or Gbg-subunits (mSIRK or expression of bARKct) (25, 26) abolished the 

plasma membrane PKC response to morphine (Fig. 3A). There was no effect of knockdown of b-arrestins, or 

negative controls (inactive mSIRK L9A, scrambled siRNA; Fig. 3A and fig. S3A). Thus, the sustained increase 

in plasma membrane PKC induced by morphine is mediated by Gai/o-Gbg. 

 

Previous studies have reported that PKC activity mediates increased cytosolic ERK in response to morphine 

(15). We therefore investigated whether the Gai/o-Gbg-PKC pathway influences the unique ERK spatiotemporal 

signaling profiles of MOPr. Rather than decreasing ERK, and in contrast to previous reports, inhibition of Gbg-

subunits or PKC (GF109203X, Gö6983) (27, 28) transformed the temporal profile of morphine-stimulated 

cytosolic ERK to resemble the transient response induced by DAMGO (Fig. 3B and fig. S3B). Moreover, 

inhibition of the Gbg-PKC pathway also allowed morphine to increase nuclear ERK (Fig. 3, C and D). Previous 

studies have implicated PKCa, PKCg and PKCe as the isoforms that contribute to morphine signaling and to the 
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development of morphine tolerance (16, 29-32). Of these, only PKCa and PKCe are expressed in our HEK293 

cell line (Fig. S3D). Inhibition of PKCa (Gö6976: targets PKCa and PKCb1) (33) but not PKCe (iPKCe peptide, 

a cell-permeable PKCe-inhibitory peptide) (34) transformed the temporal profile of morphine-stimulated 

cytosolic ERK and facilitated an increase in nuclear ERK (fig. S3, E and F). There was no effect of inactive 

controls or of these inhibitors on the response to DAMGO (Fig. 3, B to D and fig. S3, C and F). 

 

As expected, inhibition of Gbg-subunits or PKC had no effect on b-arrestin-2 recruitment or MOPr 

internalization induced by DAMGO, determined by BRET or high-content imaging (Fig. 3E and fig. S3, G to I). 

In contrast, upon inhibition of Gbg-subunits or PKC, morphine activation of MOPr resulted in a decrease in 

BRET between MOPr-RLuc and the plasma membrane marker KRas-Venus (Fig. 3F) suggesting an increase in 

the distance between these two proteins. In the absence of MOPr internalization (Fig. 3E and fig. S3, G to H), 

the morphine-stimulated change in MOPr-KRas BRET may indicate a movement of the receptor away from 

KRas within the plasma membrane. Thus, the transient activation of cytosolic and nuclear ERK elicited by 

morphine does not require MOPr internalization but may instead depend on MOPr translocation within the 

plasma membrane. 

 

The importance of MOPr localization within the plasma membrane for the control of spatiotemporal signaling 

was also supported by the effects observed upon expression of a phosphorylation-impaired MOPr mutant 

(S375A) (35). MOPr S375A still recruited b-arrestin-2 in response to DAMGO, but was unable to internalize as 

determined by high-content imaging or Rab5a BRET (Fig. 3, G and H and fig. S3, G and H). There was no 

change in MOPr S375A-KRas BRET in response to DAMGO or morphine (fig. S3J). However, stimulation of 

MOPr S375A by both DAMGO and morphine induced transient increases in cytosolic and nuclear ERK (Fig. 3I 

and fig. S3K). To confirm that receptor phosphorylation was key for the control of MOPr plasma membrane 

localization and spatiotemporal signaling, we used a phosphorylation-deficient MOPr mutant in which all the C-

terminal Ser and Thr residues have been mutated to Ala (11ST/A) (9). Consistent with previous reports, MOPr 

11ST/A was unable to internalize as determined by Rab5a BRET, or recruit b-arrestin-2 in response to DAMGO 
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(Fig. 3, G and H). However, stimulation of MOPr 11ST/A by both DAMGO and morphine induced a transient 

increase in nuclear ERK, with no change in KRas BRET (Fig. 3I and fig. S3J). Phosphorylation of Ser375 

therefore appears critical for the control of MOPr spatiotemporal signaling in response to morphine. Taken 

together, these data show that the impaired trafficking of MOPr mutants results in an altered signaling profile and 

support the hypothesis that the plasma membrane localization of MOPr, and not b-arrestin recruitment or 

receptor internalization, plays a key role in the spatiotemporal control of receptor signaling. 

 

Ligand-dependent redistribution of MOPr within the plasma membrane 

To investigate the changes in MOPr distribution elicited by morphine upon inhibition of the Gbg-PKCa 

pathway, we assessed receptor localization at the plasma membrane by confocal microscopy and subcellular 

fractionation. After 10 min stimulation of MOPr (which causes activation of all signaling pathways) there was 

no colocalization between the receptor and immunolabeled clathrin by confocal microscopy under any condition 

tested (fig. S4, A and B). However, after 60 min, stimulation with DAMGO but not morphine caused significant 

colocalization between MOPr and clathrin (fig. S4C). In contrast, activation of the fast internalizing b2-

adrenoceptor (b2AR) by isoprenaline caused significant receptor-clathrin colocalization after 10 min (fig. S4, A 

to C). Similarly, there was no effect of DAMGO or morphine stimulation on the location of FLAG-MOPr within 

non-lipid-rich (Triton X-100 soluble) plasma membrane domains using basic lipid fractionation (fig. S4D). 

Therefore, the distinct spatiotemporal signaling profiles of morphine and DAMGO do not reflect ligand-

dependent MOPr clustering in clathrin-coated pits nor translocation to different lipid domains. 

 

To investigate MOPr localization within the plasma membrane with increased resolution, we used ground state 

depletion (GSD) super-resolution microscopy in total internal reflection fluorescence (TIRF) mode. GSD/TIRF 

allows the detection of events within the plane of the plasma membrane to an axial resolution of 100 nm. This 

approach can measure the distance between an event (receptor or receptor clusters) and its nearest neighbor 

across a population. Stimulation of FLAG-MOPr with DAMGO (10 min) increased the average distance 

between detected events (Fig. 4, A and B), suggesting MOPr redistribution within the plasma membrane. This 
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increase in distance occurs prior to and is independent of receptor internalization, as there was no effect of 

expression of dominant negative dynamin K44E (fig. S4, E and F). 

 

Morphine stimulation of FLAG-MOPr (10 min) did not change the average distance between events (Fig. 4, A 

and B). However, following inhibition of Gbg-subunits morphine increased the distance between detected MOPr 

events (Fig. 4, C and D and fig. S4, E and G), suggesting that activation of this pathway by morphine normally 

restricts MOPr localization. Interestingly, the distance between MOPr events under basal conditions following 

expression of MOPr S375A was also increased when compared to the wild-type receptor (Fig. 4, E and F). This 

increase in distance between events was not due to decreased receptor expression at the plasma membrane 

(MOPr S375A 570,000 sites per cell, MOPr wild-type 140,000 sites per cell measured by whole cell [3H]-

diprenorphine binding), confirming that MOPr S375A was differentially distributed compared to the wild-type 

receptor. 

 

Thus, our results suggest that activation of MOPr by morphine restricts receptor localization, whereas DAMGO 

stimulation allows MOPr redistribution within the plasma membrane. Disruption of the Gbg-PKCa-

phosphorylation pathway allows morphine to stimulate a DAMGO-like redistribution of MOPr but does not 

result in receptor internalization. This receptor redistribution precedes (DAMGO), or can occur independently of 

(morphine), endocytosis and appears to control the ability of MOPr to transiently activate cytosolic and nuclear 

ERK. 

 

Disruption of plasma membrane organization alters MOPr spatiotemporal signaling 

To confirm the importance of membrane organization in the control of compartmentalized MOPr signaling, we 

depleted cholesterol from the plasma membrane using methyl-b-cyclodextrin (MbCD) (36) or Filipin III (37). 

There was no effect of these treatments on MOPr internalization, as determined by high-content imaging (fig. 

S5, A and B). However, both MbCD and Filipin III abolished the distinct spatiotemporal signaling profiles of 

morphine and DAMGO (Fig. 5 and fig. S5). Upon cholesterol depletion, both morphine and DAMGO increased 



10 

PKC activity at the plasma membrane and caused a transient increase in cytosolic and nuclear ERK (Fig. 5 and 

fig. S5, C to F). Importantly, membrane cholesterol replenishment by incubation of the cells with 

MbCD/cholesterol complexes, completely restored the original spatiotemporal signaling profiles of DAMGO 

and morphine (Fig. 5 and fig. S5). 

 

Thus, disruption of membrane organization alters the spatiotemporal signaling profiles of MOPr, with no change 

in the ability of the receptor to internalize, confirming that plasma membrane localization of MOPr plays an 

important role in determining its spatiotemporal signaling. 

 

MOPr compartmentalized signaling in dorsal root ganglia (DRG) neurons 

To confirm the physiological relevance of the spatiotemporal signaling patterns of MOPr when expressed in 

HEK293 cells, we nucleofected isolated neurons from mouse DRG with the FRET biosensors. DRG neurons are 

the principal mediators of nociception from the periphery to the spinal cord and activation of endogenous MOPr 

in these neurons partially mediates the analgesic actions of opioids (38). 

 

Activation of MOPr in DRG neurons stimulated ERK and PKC activity with spatiotemporal profiles that were 

identical to those observed in HEK293 cells. DAMGO caused a transient increase in both cytosolic and nuclear 

ERK, whereas morphine elicited a sustained increase in cytosolic ERK and plasma membrane PKC (Fig. 6, A to 

C). Inhibition of PKC decreased the percentage of neurons that exhibited a sustained cytosolic ERK response to 

morphine (from 75% to 49%), and increased the percentage of neurons that exhibited a transient cytosolic ERK 

response (from 25% to 51%) (Fig. 6, D and E). There was no effect of PKC inhibition on the temporal profile of 

cytosolic ERK following stimulation with DAMGO (Fig. 6, D and E). As observed in HEK293 cells, inhibition 

of PKC allowed morphine to activate nuclear ERK (Fig. 6F). 

 

We also assessed the distribution of endogenous MOPr at the plasma membrane of DRG neurons (Fig. 6G) using 

GSD/TIRF microscopy. As in HEK293 cells, stimulation of endogenous MOPr in DRG neurons with DAMGO 
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increased the distance between detected events at the plasma membrane (Fig. 6, H and I). In contrast, there was 

no change in the distance between MOPr events in response to morphine. 

 

Thus, in DRG neurons, as in HEK293 cells, receptor redistribution at the plasma membrane correlates with 

transient increases in cytosolic and nuclear ERK in response to DAMGO. Moreover, inhibition of PKC allows 

morphine to cause transient increases in cytosolic and nuclear ERK. As such, the spatiotemporal regulation of 

MOPr activation and signaling identified in recombinant expression systems also occurs in DRG neurons 

endogenously expressing this receptor.  
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Discussion 

The use of biophysical approaches to assess MOPr signaling in real time and in live cells has revealed a new 

mechanism that contributes to the control of differential MOPr activation. Here we show that DAMGO 

activation of MOPr triggers receptor translocation within the plasma membrane. This translocation precedes 

receptor trafficking to clathrin-containing domains and internalization and is likely dependent on receptor 

phosphorylation (Fig. 7A). This MOPr translocation, not receptor internalization, determines the transient 

cytosolic ERK profile and the activation of nuclear ERK (Fig. 7A). In contrast, morphine activates plasma 

membrane-localized PKCa, via Gbg-subunits, which prevents receptor translocation within the plasma 

membrane. This results in sustained cytosolic ERK and no nuclear ERK activity (Fig. 7B). Inhibition of this 

Gbg-PKCa-phosphorylation pathway allows the morphine-activated MOPr to translocate within the plasma 

membrane and transforms its spatiotemporal signaling profile (Fig. 7B). Importantly, this new signaling profile 

mimics that of the internalizing ligand DAMGO (i.e. transient cytosolic and nuclear ERK) but occurs in the 

absence of b-arrestin-2 recruitment and without receptor internalization.  

 

These results add essential detail to previous descriptions of ligand-dependent differences in ERK signaling (14-

16). Previous studies using immunoblotting showed that etorphine-induced ERK phosphorylation was dependent 

on b-arrestins, whereas morphine activated ERK via a PKC-dependent pathway (15). However, we show that 

upon PKC inhibition, morphine can still induce ERK phosphorylation, although this signal has different 

temporal dynamics and occurs both in the cytosol and the nucleus (Fig. 3 and 7B). Therefore, the activation of 

cytosolic ERK by morphine is not PKC-dependent but rather PKC, by controlling MOPr localization, dictates 

the dynamics and location of this response. It is interesting to consider that in the context of a whole cell 

following solubilization (with a relatively greater contribution of cytosolic compared to nuclear ERK), this 

altered temporal profile could appear as an apparent decrease in morphine stimulated ERK. This illustrates the 

extra mechanistic detail that can be obtained by resolving spatial and temporal signaling dynamics in live cells. 

We therefore propose that plasma membrane organization of MOPr, not just b-arrestin recruitment and 
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internalization, dictates the spatiotemporal outcome of receptor activation. Importantly, these mechanisms 

operate in nociceptive neurons, and may thus contribute to the analgesic actions of opioids. 

 

The ability of DAMGO, but not morphine, to cause receptor redistribution may relate to differential patterns of 

MOPr phosphorylation. While all opioids cause phosphorylation of MOPr at Ser375, this is mediated by 

different kinases depending on the ligand (9, 39). Previous studies have shown that the DAMGO-activated 

MOPr is phosphorylated by GRKs 2 and 3 and that internalizing ligands drive higher-order phosphorylation of 

flanking residues that result in efficient b-arrestin recruitment and receptor internalization (9). Here we show that 

recruitment of b-arrestin-2, MOPr translocation and activation of nuclear ERK in response to DAMGO precede 

receptor internalization. As such, we hypothesize that differential recruitment of regulatory proteins (GRKs, b-

arrestins) to MOPr may underlie receptor redistribution at the plasma membrane, and thus indirectly control 

spatiotemporal signaling. This is supported by the fact that mutation of the key hierarchical phosphorylation site 

of MOPr (MOPr S375A) affects the localization of the receptor within the plasma membrane and its 

spatiotemporal signaling. In this context, b-arrestins are increasingly recognized as scaffolding proteins for 

signaling complexes, in addition to their traditional roles in the regulation of receptor desensitization and 

internalization (40). Furthermore, recent evidence suggests that GRKs can also have important scaffolding 

functions, particularly for the control of ERK activation (41, 42). We hypothesize that differential assembly of 

receptor kinases and other signaling mediators in response to morphine versus DAMGO stimulation of MOPr 

determines receptor redistribution, transient signaling profiles and activation of nuclear ERK. Importantly, this 

entails that the responses of opioid ligands will be highly dependent on the specific protein content of opioid-

responsive cells (6, 7, 43, 44). 

 

Our results also highlight the importance of PKCa in governing MOPr spatiotemporal signaling profiles. 

Previous studies have shown that phosphorylation and desensitization of MOPr following morphine stimulation 

is partially dependent upon PKC (39, 45, 46). Moreover, there are strong indications that PKC plays a significant 

role in the initiation and maintenance of tolerance to morphine analgesia (47, 48). To date, evidence for 
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morphine-induced activation of PKC comes from co-immunoprecipitation studies showing recruitment of over-

expressed PKCe to MOPr (16) and increased PKC activity in cell lysates (49). By measuring endogenous PKC 

activity at the subcellular level, we directly demonstrate that morphine, but not DAMGO, stimulates a sustained 

activation of PKC at the plasma membrane. While PKC can phosphorylate MOPr directly (32, 50), it can also 

phosphorylate proteins that participate in MOPr signaling such as Gai (51) or GRK2 (52) and could therefore 

restrict receptor redistribution by modulating the function and/or association of such signaling and scaffolding 

proteins with MOPr.  

 

It is clear that plasma membrane organization plays a critical role in the control of MOPr spatiotemporal 

signaling. Whether MOPr resides within biochemically-defined lipid-rich plasma membrane regions is 

controversial (53-55). However, and in line with our findings, previous studies have provided evidence for a 

restricted plasma membrane localization, and agonist-regulated plasma membrane diffusion of the MOPr (56-

59). Protein-protein interactions were hypothesized to mediate the restricted and slow diffusion of agonist-

stimulated non-internalizing MOPr (60). Together with the results presented here, this suggests that the dynamic 

organization of MOPr within the plasma membrane, rather than MOPr association with a pre-defined lipid-rich 

domain, may control ligand-dependent receptor redistribution and unique spatiotemporal signaling profiles. The 

dependence of MOPr signaling on plasma membrane localization extends recent studies demonstrating distinct 

control of spatiotemporal signaling by endosomally-localized GPCRs (2, 61). In the context of MOPr, 

mechanistic insight into the actions of morphine at the cellular level is of particular therapeutic relevance due to 

the severe side-effects induced by this opiate. Whether chronic exposure to opiates differentially alters 

spatiotemporal signaling and/or the plasma membrane distribution of MOPr remains to be investigated.  
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Materials and Methods 

Reagents, cDNAs and methods for Supplementary Figures are described in Supplementary Materials and 

Methods. 

 

Cell culture and inhibitors 

HEK293 cells were grown in DMEM supplemented with 5% v/v FBS. Cells were transfected using linear 

polyethyleneimine (PEI) (62). For siRNA, cells were transfected with 25 nM scrambled or combined b-arrestin-

1 and b-arrestin-2 SMARTpool ON-TARGETplus siRNA with Lipofectamine 2000 24 h prior to transfection 

with receptor and biosensors. 

 

Cells were pre-treated with inhibitors for 30 min at 37°C, except for Filipin III, MbCD or MbCD/cholesterol 

complexes (45 min) or PTx (16 hours). MbCD/cholesterol complexes were formed as described previously (63). 

Inhibitors were used at the following concentrations: 30 µM PitStop2 or inactive PitStop2, 10 µM NF023, 100 

ng/mL PTx, 5 µM mSIRK or mSIRK L9A, 1 µM GF109203X or Gö6983, 10 nM Gö6976, 10 µM Myr-

EAVSLKPT-OH (inhibitory PKCe peptide, iPKCe), 1 µg/mL Filipin III, 10 mM MbCD, 2 mM MbCD with 0.2 

mM cholesterol (MbCD/cholesterol complexes). 

 

All experiments were performed in live cells at 37°C. For all regulation and trafficking experiments cells were 

stimulated with an EC50 concentration of DAMGO or morphine (both 1 µM) defined by b-arrestin-2 

concentration-response curves (fig. S2A). For all signaling experiments cells were stimulated with an EC50 

concentration of DAMGO (10 nM) or morphine (100 nM) defined by AlphaScreen pERK assays (fig. S1A). 

 

DRG isolation and culture 

All procedures involving mice were approved by the Monash Institute of Pharmaceutical Sciences animal ethics 

committee. DRG neurons were isolated and nucleofected with 600 ng of cytoEKAR Cerulean/Venus, nucEKAR 
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Cerulean/Venus or pmCKAR using the Nucleofector system (Lonza) (see (62) for detailed protocols of DRG 

isolation and nucleofection).  

 

Bioluminescence Resonance Energy Transfer 

HEK293 cells were transfected with 1 µg MOPr-RLuc and 4 µg KRas-Venus, Rab5a-Venus or b-arrestin-2-

YFP. For co-expression, cells were transfected with an additional 2 µg of bARKct, GFP-dynamin or GFP-

dynamin K44E. After 24 hours cells were plated in poly-D-lysine-coated 96-well plates (CulturPlate, 

PerkinElmer) and allowed to adhere. 48 hours post-transfection, cells were equilibrated in HBSS then stimulated 

with vehicle (0.1% DMSO), DAMGO or morphine for 30 min. Coelenterazine h (Promega) was added at a final 

concentration of 5 µM and cells were incubated for 10 min. BRET measurements were obtained using a 

PHERAstar Omega (BMG Labtech, Germany) that allows sequential integration of the signals detected at 

475±30 and 535±30 nm using filters with the appropriate band pass. Data are presented as a BRET ratio 

(calculated as the ratio of YFP to RLuc signals) corrected for vehicle.  

 

FRET 

HEK293 cells were transfected with 55 ng/well MOPr and 40 ng/well cytoEKAR GFP/RFP, nucEKAR 

GFP/RFP, cytoCKAR or pmCKAR. For co-expression, cells were transfected with an additional 50 ng/well 

bARKct, GFP-dynamin or GFP-dynamin K44E. Experiments co-expressing GFP-dynamin or GFP-dynamin 

K44E used the Cerulean/Venus FRET sensors. FRET was measured using a high-content GE Healthcare INCell 

2000 Analyzer (see (62) for detailed protocols). Briefly, fluorescence imaging was performed using a Nikon 

Plan Fluor ELWD 40x (NA 0.6) objective and FRET module. For GFP/RFP emission ratio analysis, cells were 

sequentially excited using a FITC filter (490/20) with emission measured using dsRed (605/52) and FITC 

(525/36) filters, and a polychroic optimized for the FITC/dsRed filter pair (Quad4). For CFP/YFP or 

Cerulean/Venus emission ratio analysis, cells were sequentially excited using a CFP filter (430/24) with 

emission measured using YFP (535/30) and CFP (470/24) filters, and a polychroic optimized for the CFP/YFP 

filter pair (Quad3). HEK293 cells were imaged every 1 min, allowing image capture of 14 wells per min; DRG 
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neurons were imaged every 1 min with four fields of view per well, allowing capture of 3 wells per min. At the 

end of every experiment, the same cells were stimulated with the positive control (200 nM phorbol 12,13-

dibutyrate for ERK or 200 nM phorbol 12,13-dibutyrate with phosphatase inhibitor cocktail 2 (Sigma Aldrich) 

for PKC) for 10 min to generate a maximal FRET change, and positive emission ratio images were captured for 

4 min. 

 

Data were analyzed using the FIJI distribution of ImageJ (64). The three emission ratio image stacks (baseline, 

stimulated, positive) were collated and aligned using the StackCreator script (62). Cells were selected and 

fluorescence intensity measured over the combined stack. Background intensity was subtracted, then FRET data 

plotted as the change in FRET emission ratio relative to the maximal response for each cell (FRET 

ratio/maximum FRET ratio; F/FMax). For HEK293, only cells that showed more than a 10% change relative to 

baseline following stimulation with the positive control were considered for analysis. For DRG neurons, all cells 

that showed more than a 3% change relative to baseline following stimulation with the positive control were 

considered for analysis. 

  

Ratiometric pseudocolor images were generated according to (65). The Green Fire Blue LUT was applied, and 

the Brightness and Contrast range was set to the minimum and maximum FRET ratios within the image stack 

(0.13-0.23). 

 

GSD/TIRF microscopy 

HEK293 cells and DRG neurons were stimulated with vehicle (0.1% DMSO), DAMGO or morphine as 

indicated, fixed in 4% paraformaldehyde (20 min, 4°C), washed for 15 min with PBS, blocked in PBS with 1% 

Normal goat serum and 0.1% saponin (1 hour, RT), and incubated overnight at 4°C with mouse anti-FLAG 

antibody (1:1000) for HEK293 or rabbit anti-MOPr (UMB-3, 1:250) and anti-tubulin bIII (1:1000) for DRG 

neurons. Cells were washed and incubated with Alexa568- or Alexa647-conjugated goat anti-mouse or anti-

rabbit secondary antibodies (1:400, 2 hours, RT). Coverslips were mounted on a concave slide containing 100 
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mM cysteamine (MEA) and sealed. Cells were observed with a Leica GSD microscope with HCX PL APO 160x 

(NA 1.43) objective, SuMo stage, Andor iXon Ultra 897 camera and LAS AF software. Pumping occurred at 

100% laser power until the frame correlation dropped to 0.25. Data were acquired at 50% laser power, and up to 

30,000 frames captured. TIRF penetration was at 110 nm. Only neurons with positive staining for β-tubulin were 

analyzed. Images were analyzed in FIJI (64). Individual particles were selected using Find Maxima (noise 

tolerance 5) to generate a binary output of the single points. The average distance between events was calculated 

by creating a centroid list using the Analyze Particles command, and processed by the Nearest Neighbor 

Distance (NND) macro (Yuxiong Mao). Euclidean distance maps were generated from the single point binary 

image using the Euclidean Distance option.  
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Figure Legends. 

 

Figure 1. Ligand-dependent spatiotemporal signaling of MOPr. A-D, Spatiotemporal activation of ERK 

following vehicle, DAMGO or morphine stimulation. (A) Cytosolic ERK (416-606 cells). (B) Representative 

pseudocolor ratiometric images of cytoEKAR. (C) Nuclear ERK (561-810 cells). (D) Representative 

pseudocolor ratiometric images of nucEKAR. Pseudocolor scale as in B. E-F Spatiotemporal activation of PKC 

following vehicle, DAMGO or morphine stimulation. (E) Plasma membrane-localized PKC (155-220 cells). (F) 

Cytosolic PKC (45-115 cells). Symbols represent means, error bars SEM. 

 

Figure 2. Effect of Gai/o protein inhibition, b-arrestin knockdown or inhibition of endocytosis on cytosolic 

and nuclear ERK activation by MOPr. A-B, MOPr trafficking to early endosomes (n³3) in response to 30 min 

vehicle, DAMGO or morphine in the presence of (A) the clathrin-mediated endocytosis inhibitor PitStop2 (PS2) 

or inactive control, or upon expression of wild-type (WT) dynamin or dominant negative dynamin K44E or (B) 

with and without knockdown of b-arrestins or pre-incubation with Gai/o protein inhibitors. C-F, Spatial activation 

of ERK following vehicle, DAMGO or morphine stimulation, with and without knockdown of b-arrestins, Gai/o 

protein inhibition, in the presence of PS2 or inactive control, or upon expression of WT or K44E dynamin. (C) 

Cytosolic ERK (19-168 cells) with Gai/o protein inhibition or knockdown of b-arrestins. (D) Cytosolic ERK (35-

245 cells) following inhibition of endocytosis. (E) Nuclear ERK (52-258 cells) with Gai/o protein inhibition or 

knockdown of b-arrestins. (F) Nuclear ERK (51-306 cells) following inhibition of endocytosis. Bars/symbols 

represent means, error bars SEM. * p<0.05, ** p<0.01, *** p<0.001 versus vehicle control, two-way ANOVA 

with Tukey’s multiple comparison test. AUC, area under the curve; scram., scrambled; b-arr., b-arrestin; PTx, 

pertussis toxin. 

 

Figure 3. Role of PKC activation by morphine in the spatiotemporal control of ERK activity.  (A) The 

effect of G protein inhibitors or inactive controls on plasma membrane PKC activity following vehicle, DAMGO 

or morphine stimulation (39-229 cells). B-D, MOPr spatiotemporal activation of ERK following vehicle, 
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DAMGO or morphine stimulation with or without inhibition of Gbg or PKC. (B) Cytosolic ERK (31-101 cells). 

(C) Nuclear ERK (74-126 cells). (D) Nuclear ERK analyzed as area under the curve (AUC; 22-360 cells). E-F, 

MOPr trafficking (n³3) following vehicle, DAMGO or morphine stimulation with or without inhibition of Gbg 

or PKC. (E) MOPr-RLuc and Rab5a-Venus BRET. (F) MOPr-RLuc and KRas-Venus BRET. G-I, Effect of 

phosphorylation site mutations on MOPr regulation, trafficking and nuclear ERK. (G) MOPr-RLuc8 and b-

arrestin-2-YFP BRET (n=3-7). (H) MOPr-RLuc8 and Rab5a-Venus BRET (n=3-4). (I) Nuclear ERK (87-359 

cells). Bars/symbols represent means, error bars SEM. * p<0.05, ** p<0.01 and *** p<0.001 versus vehicle 

control, two-way ANOVA with Tukey’s (A,D) or Dunnett’s (E-I) multiple comparison tests. PTx, pertussis 

toxin; GFx, GF109203X; WT, wild-type. 

 

Figure 4. DAMGO induces a unique MOPr distribution at the plasma membrane. Plasma membrane 

distribution of FLAG-MOPr in response to 10 min vehicle, DAMGO or morphine using GSD/TIRF (n=3-9). (A) 

Representative GSD/TIRF images and Euclidean distance maps (EDM) under control conditions. Scale bar 1 

µm. (B) Average distance to nearest neighbor under control conditions. (C) Average distance to nearest neighbor 

following Gbg inhibition. (D) Representative GSD/TIRF images and EDM following Gbg inhibition. Scale bar 1 

µm, pseudocolor scale as in A. (E) Representative GSD/TIRF images and EDM of wild-type MOPr (WT) or 

MOPr S375A under basal conditions. Scale bar 1 µm, pseudocolor scale as in A. (F) Average distance to nearest 

neighbor. Bars represent means, error bars SEM. *** p<0.001 versus vehicle control, one-way ANOVA with 

Dunnett’s multiple comparison test (B,C) or unpaired t-test (E). 

 

Figure 5. Disruption of membrane architecture alters MOPr signaling profiles. Spatiotemporal activation of 

PKC and ERK following vehicle, DAMGO or morphine stimulation, with and without pre-treatment with 

MbCD or MbCD/cholesterol complexes (MbCD/choles.). (A) Plasma membrane-localized PKC in response to 

DAMGO (40-174 cells). (B) Cytosolic ERK in response to DAMGO (30-167 cells). (C) Nuclear ERK in 

response to DAMGO (68-230 cells). (D) Plasma membrane-localized PKC in response to morphine (41-195 
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cells). (E) Cytosolic ERK in response to morphine (32-194 cells). (F) Nuclear ERK in response to morphine (80-

217 cells). Symbols represent means, error bars SEM. 

 

Figure 6. Spatiotemporal signaling of endogenous MOPr in DRG neurons. A-F, Spatiotemporal activation 

of ERK or PKC following vehicle, DAMGO or morphine stimulation. (A) Cytosolic ERK (56-120 neurons). (B) 

Nuclear ERK (45-64 neurons). (C) Plasma membrane-localized PKC (40-55 neurons). (D) Effect of PKC 

inhibition on cytosolic ERK (86-99 neurons). (E) Population analysis of the temporal profile of cytosolic ERK, 

with the number of neurons in each group indicated. (F) Effect of PKC inhibition on nuclear ERK (25-73 

neurons). G-I, Plasma membrane distribution of endogenous MOPr in response to 10 min vehicle, DAMGO or 

morphine using GSD/TIRF (n=9-15). (G) Isolated DRG neuron immunostained for MOPr (green) and tubulin 

bIII (magenta). Scale bar 10 µm. (H) Representative GSD/TIRF images and Euclidean distance maps (EDM). 

Scale bar 1 µm. (I) Average distance to nearest neighbor. Bars/symbols represent means, error bars SEM. * 

p<0.05; ** p<0.01 and *** p<0.001 versus vehicle control, two-way ANOVA with Tukey’s multiple 

comparison test (F) or one-way ANOVA with Dunnett’s multiple comparison test (I). AUC, area under the 

curve. 

 

Figure 7. Plasma membrane localization controls MOPr spatiotemporal signaling. (A) DAMGO causes 

recruitment of GRK2 and b-arrestin-2 (1), facilitating MOPr redistribution across the plasma membrane and 

transient activation of Gai/o-mediated cytosolic ERK and Gai/o-independent nuclear ERK (2). Upon prolonged 

stimulation of MOPr, DAMGO triggers MOPr clustering and receptor internalization via clathrin-coated pits (3) 

to early endosomes (4). (B) Morphine stimulates plasma membrane-localized Gbg-PKCa that prevents receptor 

translocation within the plasma membrane. This causes a sustained activation of Gai/o-mediated cytosolic ERK 

(1). Inhibition of the Gbg-PKCa-pathway, or alteration of plasma membrane organization facilitates MOPr 

translocation and activation of nuclear ERK by morphine (2) without receptor internalization. 
















