90 research outputs found

    The multifaceted role of vitamin b6 in cancer: drosophila as a model system to investigate dna damage

    Get PDF
    A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity

    Behavioral Impact of the Regulation of the Brain 2-Oxoglutarate Dehydrogenase Complex by Synthetic Phosphonate Analog of 2-Oxoglutarate: Implications into the Role of the Complex in Neurodegenerative Diseases

    Get PDF
    Decreased activity of the mitochondrial 2-oxoglutarate dehydrogenase complex (OGDHC) in brain accompanies neurodegenerative diseases. To reveal molecular mechanisms of this association, we treated rats with a specific inhibitor of OGDHC, succinyl phosphonate, or exposed them to hypoxic stress. In males treated with succinyl phosphonate and in pregnancy-sensitized females experiencing acute hypobaric hypoxia, we revealed upregulation of brain OGDHC (within 24 hours), with the activity increase presumably representing the compensatory response of brain to the OGDHC inhibition. This up-regulation of brain OGDHC was accompanied by an increase in exploratory activity and a decrease in anxiety of the experimental animals. Remarkably, the hypoxia-induced elevation of brain OGDHC and most of the associated behavioral changes were abrogated by succinyl phosphonate. The antagonistic action of hypoxia and succinyl phosphonate demonstrates potential therapeutic significance of the OGDHC regulation by the phosphonate analogs of 2-oxoglutarate

    Molecular characterization of pyridoxine 5′-phosphate oxidase and its pathogenic forms associated with neonatal epileptic encephalopathy

    Get PDF
    Defects of vitamin B6 metabolism are responsible for severe neurological disorders, such as pyridoxamine 5′-phosphate oxidase deficiency (PNPOD; OMIM: 610090), an autosomal recessive inborn error of metabolism that usually manifests with neonatal-onset severe seizures and subsequent encephalopathy. At present, 27 pathogenic mutations of the gene encoding human PNPO are known, 13 of which are homozygous missense mutations; however, only 3 of them have been characterised with respect to the molecular and functional properties of the variant enzyme forms. Moreover, studies on wild type and variant human PNPOs have so far largely ignored the regulation properties of this enzyme. Here, we present a detailed characterisation of the inhibition mechanism of PNPO by pyridoxal 5′-phosphate (PLP), the reaction product of the enzyme. Our study reveals that human PNPO has an allosteric PLP binding site that plays a crucial role in the enzyme regulation and therefore in the regulation of vitamin B6 metabolism in humans. Furthermore, we have produced, recombinantly expressed and characterised several PNPO pathogenic variants responsible for PNPOD (G118R, R141C, R225H, R116Q/R225H, and X262Q). Such replacements mainly affect the catalytic activity of PNPO and binding of the enzyme substrate and FMN cofactor, leaving the allosteric properties unaltered

    Lactation and neonatal nutrition: defining and refining the critical questions.

    Get PDF
    This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond

    Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer

    Full text link

    The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity

    Get PDF
    Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the α-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell’s change in bioenergetic requirements. By contributing to the control of α-ketoglutarate levels, dynamics, and oxidation state, the α-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer
    corecore