6 research outputs found

    Drug-associated changes in amino acid residues in Gag p2, p7NC, and p6Gag/p6Pol in human immunodeficiency virus type 1 (HIV-1) display a dominant effect on replicative fitness and drug response

    Get PDF
    AbstractRegions of HIV-1 gag between p2 and p6Gag/p6Pol, in addition to protease (PR), develop genetic diversity in HIV-1 infected individuals who fail to suppress virus replication by combination protease inhibitor (PI) therapy. To elucidate functional consequences for viral replication and PI susceptibility by changes in Gag that evolve in vivo during PI therapy, a panel of recombinant viruses was constructed. Residues in Gag p2/p7NC cleavage site and p7NC, combined with residues in the flap of PR, defined novel fitness determinants that restored replicative capacity to the posttherapy virus. Multiple determinants in Gag have a dominant effect on PR phenotype and increase susceptibility to inhibitors of drug-resistant or drug-sensitive PR genes. Gag determinants of drug sensitivity and replication alter the fitness landscape of the virus, and viral replicative capacity can be independent of drug sensitivity. The functional linkage between Gag and PR provides targets for novel therapeutics to inhibit drug-resistant viruses

    The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon

    Get PDF
    The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially-produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD+, oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27kip1 phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor

    Trust Your Gut : Establishing Confidence in Gastrointestinal Models - An Overview of the State of the Science and Contexts of Use

    No full text
    The webinar series and workshop titled "Trust Your Gut: Establishing Confidence in Gastrointestinal Models - An Overview of the State of the Science and Contexts of Use" was co-organized by NICEATM, NIEHS, FDA, EPA, CPSC, DoD, and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and hosted at the National Institutes of Health in Bethesda, MD, USA on October 11-12, 2023. New approach methods (NAMs) for assessing issues of gastrointestinal tract (GIT)related toxicity offer promise in addressing some of the limitations associated with animal-based assessments. GIT NAMs vary in complexity, from two-dimensional monolayer cell line-based systems to sophisticated 3-dimensional organoid systems derived from human primary cells. Despite advances in GIT NAMs, challenges remain in fully replicating the complex interactions and processes occurring within the human GIT. Presentations and discussions addressed regulatory needs, challenges, and innovations in incorporating NAMs into risk assessment frameworks; explored the state of the science in using NAMs for evaluating systemic toxicity, understanding absorption and pharmacokinetics, evaluating GIT toxicity, and assessing potential allergenicity; and discussed strengths, limitations, and data gaps of GIT NAMs as well as steps needed to establish confidence in these models for use in the regulatory setting
    corecore