343 research outputs found

    Emotion based attentional priority for storage in visual short-term memory

    Get PDF
    A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands

    Distractor Inhibition Predicts Individual Differences in the Attentional Blink

    Get PDF
    Background: The attentional blink (AB) refers to humans' impaired ability to detect the second of two targets (T2) in a rapid serial visual presentation (RSVP) stream of distractors if it appears within 200-600 ms of the first target (T1). Here we examined whether humans' ability to inhibit distractors in the RSVP stream is a key determinant of individual differences in T1 performance and AB magnitude

    Learned Value Magnifies Salience-Based Attentional Capture

    Get PDF
    Visual attention is captured by physically salient stimuli (termed salience-based attentional capture), and by otherwise task-irrelevant stimuli that contain goal-related features (termed contingent attentional capture). Recently, we reported that physically nonsalient stimuli associated with value through reward learning also capture attention involuntarily (Anderson, Laurent, & Yantis, PNAS, 2011). Although it is known that physical salience and goal-relatedness both influence attentional priority, it is unknown whether or how attentional capture by a salient stimulus is modulated by its associated value. Here we show that a physically salient, task-irrelevant distractor previously associated with a large reward slows visual search more than an equally salient distractor previously associated with a smaller reward. This magnification of salience-based attentional capture by learned value extinguishes over several hundred trials. These findings reveal a broad influence of learned value on involuntary attentional capture

    Do I Have My Attention? Speed of Processing Advantages for the Self-Face Are Not Driven by Automatic Attention Capture

    Get PDF
    We respond more quickly to our own face than to other faces, but there is debate over whether this is connected to attention-grabbing properties of the self-face. In two experiments, we investigate whether the self-face selectively captures attention, and the attentional conditions under which this might occur. In both experiments, we examined whether different types of face (self, friend, stranger) provide differential levels of distraction when processing self, friend and stranger names. In Experiment 1, an image of a distractor face appeared centrally – inside the focus of attention – behind a target name, with the faces either upright or inverted. In Experiment 2, distractor faces appeared peripherally – outside the focus of attention – in the left or right visual field, or bilaterally. In both experiments, self-name recognition was faster than other name recognition, suggesting a self-referential processing advantage. The presence of the self-face did not cause more distraction in the naming task compared to other types of face, either when presented inside (Experiment 1) or outside (Experiment 2) the focus of attention. Distractor faces had different effects across the two experiments: when presented inside the focus of attention (Experiment 1), self and friend images facilitated self and friend naming, respectively. This was not true for stranger stimuli, suggesting that faces must be robustly represented to facilitate name recognition. When presented outside the focus of attention (Experiment 2), no facilitation occurred. Instead, we report an interesting distraction effect caused by friend faces when processing strangers’ names. We interpret this as a “social importance” effect, whereby we may be tuned to pick out and pay attention to familiar friend faces in a crowd. We conclude that any speed of processing advantages observed in the self-face processing literature are not driven by automatic attention capture

    On the limits of top-down control of visual selection

    Get PDF
    In the present study, observers viewed displays in which two equally salient color singletons were simultaneously present. Before each trial, observers received a word cue (e.g., the word red, or green) or a symbolic cue (a circle colored red or green) telling them which color singleton to select on the upcoming trial. Even though many theories of visual search predict that observers should be able to selectively attend the target color singleton, the results of the present study show that observers could not select the target singleton without interference from the irrelevant color singleton. The results indicate that the irrelevant color singleton captured attention. Only when the color of the target singleton remained the same from one trial to the next was selection perfect—an effect that is thought to be the result of passive automatic intertrial priming. The results of the present study demonstrate the limits of top-down attentional control

    Neurological diseases as primary gliopathies: a reassessment of neurocentrism

    Get PDF
    Diseases of the human brain are almost universally attributed to malfunction or loss of nerve cells. However, a considerable amount of work has, during the last decade, expanded our view on the role of astrocytes in CNS (central nervous system), and this analysis suggests that astrocytes contribute to both initiation and propagation of many (if not all) neurological diseases. Astrocytes provide metabolic and trophic support to neurons and oligodendrocytes. Here, we shall endeavour a broad overviewing of the progress in the field and forward the idea that loss of homoeostatic astroglial function leads to an acute loss of neurons in the setting of acute insults such as ischaemia, whereas more subtle dysfunction of astrocytes over periods of months to years contributes to epilepsy and to progressive loss of neurons in neurodegenerative diseases. The majority of therapeutic drugs currently in clinical use target neuronal receptors, channels or transporters. Future therapeutic efforts may benefit by a stronger focus on the supportive homoeostatic functions of astrocytes
    corecore