
ORIGINAL ARTICLE

Beyond trial types

Mads Dyrholm • Signe Vangkilde • Claus Bundesen

Received: 22 October 2013 / Accepted: 17 April 2014 / Published online: 4 May 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Conventional wisdom on psychological exper-

iments has held that when one or more independent vari-

ables are manipulated it is essential that all other conditions

are kept constant such that confounding factors can be

assumed negligible (Woodworth, 1938). In practice, the

latter assumption is often questionable because it is gen-

erally difficult to guarantee that all other conditions are

constant between any two trials. Therefore, the most

common way to check for confounding violations of this

assumption is to split the experimental conditions in terms

of ‘‘trial types’’ to simulate a reduction of unintended trial-

by-trial variation. Here, we pose a method which is more

general than the use of trial types: use of mathematical

models treating measures of potentially confounding fac-

tors and manipulated variables as equals on the single-trial

level. We show how the method can be applied with

models that subsume under the generalized linear item

response theory (GLIRT), which is the case for most of the

well-known psychometric models (Mellenbergh, 1994). As

an example, we provide a new analysis of a single-letter

recognition experiment using a nested likelihood ratio test

that treats manipulated and measured variables equally

(i.e., in exactly the same way) on the single-trial level. The

test detects a confounding interaction with time-on-task as

a single-trial measure and yields a substantially better

estimate of the effect size of the main manipulation com-

pared with an analysis made in terms of trial types.

Beyond trial types

Common wisdom has implied a restrictive conception of

psychological experiments. In the words of one of the

fathers of modern experimental psychology, Robert S.

Woodworth, ‘‘an experimenter is said to control the con-

ditions in which an event occurs’’ (Woodworth, 1938). By

manipulating the experimental conditions (changing trial

types), one or more independent variables are varied, and

the associated variations in the participants’ performance

or reported experience (the dependent variables) are

observed. According to Woodworth, ‘‘whether one or more

independent variables are used, it remains essential that all

other conditions be constant. Otherwise you cannot connect

the effect observed with any definite cause’’ (Woodworth,

1938).

Notwithstanding this claim, cognitive neuroscientists

have recently begun to use physiological measures that

fluctuate from trial to trial as explanatory variables along

with manipulated variables (see Cavanagh et al., 2011;

O’Doherty, Hampton, & Kim, 2007). We further this

development by proposing that using mathematical models,

single-trial measures and manipulated variables can be

treated as equals in statistical tests. The method is readily

applicable to models that subsume under the generalized

linear item response theory (GLIRT), which is the case for

most of the well-known psychometric models (Mellen-

bergh, 1994). In GLIRT, a linear combination of latent and

observed explanatory variables is used as a predictor of the

expected response of a participant to a stimulus item in a

specified format. We show that the special case of the

Theory of Visual Attention (TVA; Bundesen, 1990) used

for modeling single-stimulus recognition (e.g., Bundesen &

Harms, 1999; Vangkilde, Coull, & Bundesen, 2012) is also

a special case of GLIRT, and we present a new analysis of
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a single-letter recognition experiment based on this theory

(Vangkilde et al., 2012, Experiment 3). The new analysis

shows that the expected response of a participant on a

particular trial depends strongly on the time-on-task asso-

ciated with the trial in question. This confound is grossly

underestimated by a traditional analysis in terms of trial

types (early vs. late trials), and it even goes undetected in a

standard post hoc check.1

Single-letter recognition under GLIRT

TVA is often used to describe an observer’s recognition

accuracy as a function of exposure duration t. In its most

commonly applied form, TVA provides estimates for the

following perceptual parameters: visual short-term memory

(VSTM) capacity K (in units of elements), processing

speed C (rate of categorization in units of elements per

second), a temporal threshold t0 (seconds), attentional

weights {wx} (unitless) for a fixed set of display positions

{x}, and a measure of the efficiency of top-down control a
(unitless ratio of the attentional weight of a distractor to the

weight of a target). This particular parameterization has

been widely applied in studies of partial report, whole

report, and change detection (Bundesen & Habekost, 2008;

Duncan et al., 1999; Gillebert et al., 2012; Habekost &

Starrfelt, 2009; Hung, Driver & Walsh, 2005, 2011; Ky-

llingsbæk & Bundesen, 2009; Shibuya & Bundesen, 1988).

The parameters have traditionally been assumed to be

nearly constant within each trial type (Kyllingsbæk, 2006),

but recent advances have shown that this assumption leads

to systematic errors (Dyrholm, Kyllingsbæk, Espeseth &

Bundesen, 2011). Here, we estimate parameters on indi-

vidual trials (the v values in Eqs. 1 and 2 below on every

trial n) using a linear predictor (the right-hand side of

Eq. 2) that varies between any two trials (for related work

on single-trial inference using the number of correctly

reported targets on a given trial for inferring the number of

distractors in VSTM on the same trial of a partial report

task, see Dyrholm, Kyllingsbæk, Vangkilde et al. 2011).

Consider a single-stimulus recognition task in which

participants are instructed to report the identity of a single

target followed by a mask. The delay between the target

and its mask defines the target exposure duration, which

enters TVA as the variable t. Summed across N Bernoulli

trials with the same exposure duration t, the number of

correct responses follows a binomial distribution with

parameters N and p, where the probability p that a given

item is correctly reported defines the expected value of the

participant’s response on each trial (Mellenbergh, 1994). In

the single-stimulus case (Bundesen & Harms, 1999; Dyr-

holm, Kyllingsbæk, Espeseth & Bundesen, 2011), TVA

implies that p = 1 - exp(- sv) where s = t - t0 is the

effective exposure duration if t exceeds the temporal

threshold t0, whereas p = 0 if t B t0. The parameter v is the

conventional single-stimulus equivalent of the C parameter

of TVA. From this, we derive a function of the expected

item response p on a given trial.

vn ¼ � lnð1� pnÞ=sn ð1Þ

where the subscript n is the trial number. This function is

monotonic and differentiable as required for a link function

under GLIRT. Inserting a linear predictor of the logarithm

of vn,

ln vnð Þ ¼ a1x1n þ a2x2n þ : : : þ aMxMn ð2Þ

we obtain a model of single-stimulus recognition that satis-

fies sufficient requirements to be subsumed under GLIRT2:

The responses are modeled as independently distributed

across trials given the values of the explanatory variables; a

distribution of the responses occurs according to the given

item format (here a dichotomous format: correct vs. incor-

rect); and the item responses pn are explained by a continuous

latent variable vn (Mellenbergh, 1994). In other words, this

model has the structure of a generalized linear model

(Knoblauch & Maloney, 2012; McCulloch & Searle, 2001)

with a highly specialized link function that allows for non-

linear regression of item responses in a single-stimulus rec-

ognition task. The specialized link function is exactly such

that the stimulus exposure duration t and the participant’s

perceptual threshold t0 are both taken into account in

accordance with TVA.

It was recently found that perceptual processing speed

v is modulated by the observer’s expectation regarding the

foreperiod between a cue and a subsequent target letter

occurrence (Vangkilde et al., 2012; Vangkilde, Petersen &

Bundesen, 2013). Specifically, in a single-letter recognition

experiment (Vangkilde et al., 2012), two levels of expec-

tancy were induced in the participants by two types of

trials, one type with a higher hazard rate of stimulus pre-

sentation than the other. Across all participants perceptual

processing was 40 % faster in the high expectancy condi-

tion compared with the low expectancy condition. This

finding was interpreted as suggesting that higher expecta-

tions speed up perceptual processing.

However, it is well known that maintaining attention

over a prolonged period of time may negatively affect
1 In this article, a ‘‘confounder’’ means a variable that is a source of

systematic error because it co-varies with one or more independent

variables (the most traditional meaning of the word) or because it

modifies the effect of some of the independent variables of interest.

Note that confounders are present in almost any study.

2 Or, at least, under a modified version of GLIRT in which the link

function may vary between stimuli (cf. stimulus parameter t) and

subjects (cf. subject parameter t0).
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attentional efficiency (Robertson et al. 1997). Even

though such effects of ‘‘time-on-task’’ could potentially

hinder optimal performance, they are rarely taken into

account in studies that do not focus explicitly on sus-

tained attention. Thus, an alternative explanation of the

finding by Vangkilde et al. (2012) could be that low-

expectancy trials are substantially more susceptible to

time-on-task effects leading to a rapid decline in pro-

cessing speed across a test session which is not seen in

the high-expectancy trials.

To exemplify the explanatory power of the model

expressed in Eqs. 1 and 2, we present a new analysis of the

same experiment (Vangkilde et al., 2012, Experiment 3),

this time including ‘‘time-on-task’’ as a potentially

explanatory variable which is tested in the same way as

variables represented in terms of trial types.

Method

Participants

Each of eight young female participants completed eight

sessions of 480 trials each.

Procedure

The events during a trial are illustrated in Fig. 1a. An

initial fixation cross was presented after which a brief cue

appeared to remind the participant of the hazard rate con-

dition (high vs. low). High hazard rate was indicated by

brightening of the vertical line, low hazard rate was indi-

cated by brightening of the horizontal line. The fixation

cross then reappeared in a variable foreperiod (cue-target
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Fig. 1 Experimental procedure. a Time course of a single trial. An

initial fixation cross was presented. Then a brief cue appeared, to

remind the participant of the hazard rate condition (high vs. low). The

fixation cross then reappeared in a variable foreperiod before the

single target letter was presented either above (as shown) or below

the fixation cross before being masked. The participant then reported

the letter identity if known. b Foreperiod distributions. These were

defined to be geometric and such that, in the high hazard rate

condition the expected foreperiod was 0.75 s, and in the low hazard

rate condition it was 4.5 s
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waiting time) before the single target letter (drawn ran-

domly from a set of 20 letter types) was presented either

above or below the fixation cross before being masked. The

participant then reported the letter identity, if known, via

the keyboard and without time constraints. To complete the

trial and continue to the next one, participants pressed the

spacebar. The exposure duration t of the target letter was

randomly sampled from the set {10 ms, 20 ms, 50 ms,

80 ms} such that all exposure durations were used equally

over the course of a session.

The hazard rate (high vs. low) alternated between blocks

of 60 trials. The foreperiod between the cue and the target

letter was chosen at random from the set {0.5 s, 1.0 s,

1.5 s,…} following two different geometric distributions

which are shown in Fig. 1b. The foreperiod distributions

were defined such that, in the high hazard rate condition the

expected foreperiod was 0.75 s (a hazard rate of 1.33 Hz),

and in the low hazard rate condition it was 4.5 s (a hazard

rate of 0.22 Hz).

Computational model

For the computational GLIRT TVA model, the cue-tar-

get foreperiod (FP) of 0.5 s was chosen as the reference,

so all other foreperiod coefficients were relative to this.

For the hazard rate (HR), the low condition was the

chosen reference. A time-on-task variable (T) was

defined on the single-trial level by translation and scal-

ing of the stimulus-onset time relative to the session

such that the value of T increased monotonically from

0.0 on the first trial of the session to 1.0 on the last trial

of the session (the 480th trial; the first trial was the

reference trial).

Four nested models were considered. For any proposi-

tion q, let {q} be the binary truth value (0 or 1) of q. In the

first model (Model 1), the natural logarithm of the per-

ceptual processing speed of the correct categorization of

the stimulus letter shown on trial n is given by

ln vnð Þ ¼ a1 þ a2 FPn ¼ 1:0 sf g þ a3 FPn ¼ 1:5 sf g
þ a4 FPn� 2:0 sf g þ a5 HRn ¼ highf g
þ a6Tn HRn ¼ highf g þ a7Tn HRn ¼ lowf g ð3Þ

where a1 = ln(vbase), and Tn = (An - A1)/(A480 - A1) is

the time-on-task variable, An being the onset time of trial n,

for n = 1, 2,…, 480. Parameter vbase is the value of v in the

reference condition (i.e., when FP = 0.5 s, T = 0.0, and

HR = low). By exponentiating both sides of Eq. 3 a simple

multiplicative structure is obtained,

Table 1 Testing with a single-trial measure of time-on-task

Variable Coefficient (as % difference)

Model 1 Model 2 Model 3� Model 4

In terms of trial types

Foreperiod

=1.0 s 5.24*** 4.91*** 7.28*** 7.46**

=1.5 s -2.21

C1.5 s -5.21

C2.0 s -4.46

Hazard Rate

=high 25.30* 24.17* 28.38*** 45.59***

Beyond trial types

Time-on-task

T -16.52***

Interactions

T 9 {HR = high} -3.93* -4.01* -3.73*

T 9 {HR = low} -26.46*** -26.64*** -26.68***

Estimated differences were given by GLIRT coefficients represented as percentage change in v value (perceptual processing speed) per

explanatory variable unit increase on average across subjects and sessions. From Model 1 onwards, the foreperiod (FP) coefficients were not

significant beyond the FP of 1.0 s. Model 2 was designed as an alternative to simply eliminating the nonsignificant FP coefficients beyond 1.0 s.

The step from Model 1 to Model 2 could not be rejected, -2lnK = 66.7, p [[ v2(64)] = .383. Model 3 was designed to test elimination of FP

coefficients beyond 1.0 s, and the step from Model 2 to Model 3 could not be rejected, -2lnK = 58.3, p[[ v2(64)] = .677. Model 4 was

designed to test whether the time-on-task (T) effects were independent of the hazard rate (HR) conditions, but this model was rejected in favor of

Model 3, -2lnK = 92.1, p[[ v2(64)] = .012. Model 3 won the model selection as further nesting to Model 4 was rejected

HR = hazard rate; T = time-on-task
� Model 3 wins the model selection. Further nesting to Model 4 was rejected, p \ .05

*p \ 0.05, ** p \ 0.01, *** p \ 0.005
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vn ¼ vbase � exp a2fFPn ¼ 1:0 sgð Þ � exp a3fFPn ¼ 1:5 sgð Þ
� exp a4fFPn� 2:0 sgð Þ � exp a5fHRn ¼ highgð Þ
� exp a6TnfHRn ¼ highgð Þ � exp a7TnfHRn ¼ lowgð Þ;

similar to the structure of the basic rate equation of TVA

(Bundesen, 1990, Eq. 1).

A sequential likelihood ratio test was designed to test

Models 1–4 (i.e., effects of the foreperiod and hazard rate,

as well as time-on-task effects including possible interac-

tion with the hazard rate). Maximum-likelihood estimation

of the model coefficients aj in Eq. 2 was achieved via chain

rules extending the Newton step (Dyrholm, Kyllingsbæk,

Espeseth, et al. 2011) for estimating vn. Estimated model

coefficients aj were mapped to [exp(aj) - 1] 9 100 % to

represent the percentage difference in perceptual process-

ing speed per unit increase of the corresponding explana-

tory variable xj. For each of the four models, the individual

coefficients were tested on the group level against the null

hypothesis that the percentage difference was zero. This

was done for each model coefficient by summing the cor-

responding 64 likelihood ratio test statistics (one per sub-

ject per session). Significance levels were then derived

from a Chi-square distribution with 64 degrees of freedom.

Results

Table 1 shows the progression of the sequential likelihood

ratio test which resulted in the selection of Model 3. This

model contained four significant coefficients on the group

level representing effects on the perceptual processing

speed v. Averaged across participants and sessions the

model is summarized as follows (cf. Table 1): An increase

in v by 7 % when the foreperiod was 1.0 s as compared to

the other foreperiods, a 28 % increase in v when the hazard

rate was high compared to when it was low, and a gradual

decrease in v over the course of a session amounting to 4 %

in the high hazard rate condition and 27 % in the low

hazard rate condition. That is, the gradual decrease in

perceptual processing speed over time happened at signif-

icantly different rates in the two different hazard rate

conditions (see Fig. 2). This interaction was detected in the

test by rejecting Model 4 when posed as an alternative to

Model 3. The modeling of this interaction using time-on-

task as a single-trial measure caused a strong reduction in

the estimated magnitude of the temporal expectation effect

(compare Models 3 and 4 in Table 1): From an estimated

46 % increase in processing speed v, down to an estimated

28 % increase in v in the high hazard rate condition as

compared with the low hazard rate condition.

Table 2 shows an almost identical test except that time-

on-task is represented as a factor with two levels: early vs.

late. That is, instead of treating each trial uniquely by its

timestamp, two trial types have been defined as those that

fall in the first half and those that fall in the second half of

the experiment. The test in Table 2 concluded in agreement

with the previous test that time-on-task interacts with the

hazard rate condition. However, the main effect of the

hazard rate manipulation was now estimated to yield a

41 % increase from the low to the high hazard rate

condition.

Compare the effect size of 41 % obtained in terms of

trial types with the effect size of 28 %, which was found

using time-on-task as a single-trial measure. A model

selection problem arises: Which one is the better estimate?

A

B

Fig. 2 Expected value of the perceptual processing speed vn given

the trial types and the target onset times of an exemplary session.

Model coefficients were set to the sample average. The trial types

were trials with high hazard rate (green and yellow) versus trials with

low hazard rate (red and blue) and trials with a foreperiod of 1 s

(circled dots) versus trials with other foreperiods (simple dots). a The

output of a conventional analysis, Model 7, where time-on-task is

represented in terms of early and late trial types. b The output of

Model 3, which differs from the conventional analysis by treating

time-on-task and manipulated variables equally on the single-trial

level. The divergence over trials between the results from the two

hazard rate conditions (yellow vs. blue) shows very clearly the

interaction between time-on-task and hazard rate
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To answer this question we computed the Bayes factor per

session by the ratio between marginal likelihoods as

derived analytically and implemented for the single-stim-

ulus TVA by Dyrholm, Kyllingsbæk, Espeseth, et al.

(2011). With an average Bayes factor of 6.97 to one

against, the single-trial model was substantially better than

the trial type model (see, e.g., Rouder et al. 2012, for a

contemporary description of Bayes factors).

An even worse result than the 41 % could have been

obtained if one had waited to introduce the time-on-task

trial types until making a post hoc check for confounding

variables. This is evident from Model 8 in Table 2 where

the time-on-task trial type variable is found to be insignif-

icant. At this point a naive experimenter could have con-

cluded incorrectly that time-on-task effects were negligible.

Estimating the GLIRT model that comes out of Model 8

with the time-on-task trial type variable removed yields a

main effect size of 49 % increase from the low to the high

hazard rate condition—an effect size estimate which is 1.75

times higher than our current best estimate of 28 %.

Discussion

We have presented a general method for analysis of

experimental data through the use of mathematical models

treating measures of potentially confounding factors and

manipulated variables as equals on the single-trial level.

We have also shown how the method can be applied with

models that subsume under GLIRT. Specifically, we

showed that the special case of TVA that is commonly used

in single-item recognition is also a special case of GLIRT,

and presented a thorough reanalysis of a single-letter rec-

ognition experiment (Vangkilde et al., 2012, Experiment 3)

based on TVA. Our exemplary analysis incorporated a

single-trial measure of time-on-task although this variable

was neither manipulated nor assumed constant. Formal

model selection showed that this way of estimation was

more precise than the one obtained using early and late trial

types. Qualitatively speaking, the model selection showed

that the confounding interaction was gradual rather than

reflecting a sudden change in type from early to late trials.

Note that the gradual model is more general in nature than

the trial type model: There are trivial scalar functions of the

gradual time-on-task measure which yield the equivalent of

the trial type model, but not the other way round. Naturally,

one may try other nonlinear transformations of explanatory

variables that go beyond trial types, thereby finding

quantitatively better mathematical models of behavior

(Cavanagh et al., 2011; Dyrholm et al. 2012). Our method

differs from generalist data mining methods (e.g., Hinton &

Salakhutdinov, 2006) by predicting through cognitive

parameters. The method also differs from cognitive model-

based functional neuroimaging (O’Doherty et al. 2007) by

having behavioral response predictability as the explicit

objective. In situations with limited data, the method

should be extended to a mixed/random effects framework.

In summary, we have presented a method for checking

the extent to which something measurable has an effect on

observed behavioral responses. The method is readily

applicable with models that fall under GLIRT by including

the potentially confounding measured variables along with

the manipulated variables on the single-trial level using

standard tests (Mellenbergh, 1994). Our detailed example

of this incorporated a measure of time-on-task in a single-

letter identification response model. A measure of time-on-

task will almost always be available, but a wealth of other

measures may also be available depending on the para-

digm, including measures of previous stimuli and respon-

ses, and physiological measures.

Table 2 Testing time-on-task

in terms of trial types

Estimated differences were

given by GLIRT coefficients

represented as percentage

change in v value (perceptual

processing speed) per

explanatory variable unit

increase on average across

subjects and sessions. Time-on-

task is represented in terms of

early and late trial types
� Model 7 wins the model

selection. Further nesting to

Model 8 was rejected, p \ .005

*p \ .05, **p \ .01,

***p \ .005

Variable Coefficient (as % difference)

Model 5 Model 6 Model 7� Model 8

In terms of trial types

Foreperiod

=1.0 s 5.25*** 4.91*** 7.16*** 7.22**

=1.5 s -2.42

C1.5 s -4.97

C2.0 s -4.04

Hazard rate

=high 37.79*** 36.41*** 40.75*** 49.19***

Time-on-task trial type

{Z = late} -7.35

Interactions

{Z = late} 9 {HR = high} -1.24** -1.12* -.97**

{Z = late} 9 {HR = low} -12.49* -12.56* -12.72*
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