1,306 research outputs found
Inflaton Decay in an Alpha Vacuum
We study the alpha vacua of de Sitter space by considering the decay rate of
the inflaton field coupled to a scalar field placed in an alpha vacuum. We find
an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum
and, surprisingly, no non-renormalizable divergences. We also consider a
modified alpha dependent time ordering prescription for the Feynman propagator
and show that it leads to an alpha independent result. This result suggests
that it may be possible to calculate in any alpha vacuum if we employ the
appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin
Finite-temperature scalar fields and the cosmological constant in an Einstein universe
We study the back reaction effect of massless minimally coupled scalar field
at finite temperatures in the background of Einstein universe. Substituting for
the vacuum expectation value of the components of the energy-momentum tensor on
the RHS of the Einstein equation, we deduce a relationship between the radius
of the universe and its temperature. This relationship exhibit a maximum
temperature, below the Planck scale, at which the system changes its behaviour
drastically. The results are compared with the case of a conformally coupled
field. An investigation into the values of the cosmological constant exhibit a
remarkable difference between the conformally coupled case and the minimally
coupled one.Comment: 7 pages, 2 figure
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified
Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes
An improved method is given for the computation of the stress-energy tensor
of a quantized scalar field using adiabatic regularization. The method works
for fields with arbitrary mass and curvature coupling in Robertson-Walker
spacetimes and is particularly useful for spacetimes with compact spatial
sections. For massless fields it yields an analytic approximation for the
stress-energy tensor that is similar in nature to those obtained previously for
massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure
Measuring anti-Americanism in editorial cartoons
Abstract: Objective-Anti-Americanism has been subjected to minimal statistical analysis. Further, scant attention is paid to what constitutes anti-Americanism for Americans. The objective of this article is to measure Americans' perceptions of anti-Americanism. Methods-Using a range of quantitative methods, including Pearson's correlation coefficient, Shannon's entropy measure, and Cohen's d statistics, we measure students' evaluations of editorial cartoons after 9/11. Twin measures of message and equity, along with participant and cartoon variables, are used to calibrate anti-Americanism in Spanish and U.S. editorial cartoons. Results-Our results indicate that message ratings, that is, anti-or pro-American, were more dependent on the nature of the cartoons than of the participants. White males rated these editorial cartoons as more equitable than other participants. The study shows that Spanish cartoons were rated significantly more anti-American. Conclusion-The article concludes that the use of U.S. icons is key to seeing anti-Americanism, along with gender, race, and origin of cartoon
Renormalization of initial conditions and the trans-Planckian problem of inflation
Understanding how a field theory propagates the information contained in a
given initial state is essential for quantifying the sensitivity of the cosmic
microwave background to physics above the Hubble scale during inflation. Here
we examine the renormalization of a scalar theory with nontrivial initial
conditions in the simpler setting of flat space. The renormalization of the
bulk theory proceeds exactly as for the standard vacuum state. However, the
short distance features of the initial conditions can introduce new divergences
which are confined to the surface on which the initial conditions are imposed.
We show how the addition of boundary counterterms removes these divergences and
induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe
Ultra-strong Adhesion of Graphene Membranes
As mechanical structures enter the nanoscale regime, the influence of van der
Waals forces increases. Graphene is attractive for nanomechanical systems
because its Young's modulus and strength are both intrinsically high, but the
mechanical behavior of graphene is also strongly influenced by the van der
Waals force. For example, this force clamps graphene samples to substrates, and
also holds together the individual graphene sheets in multilayer samples. Here
we use a pressurized blister test to directly measure the adhesion energy of
graphene sheets with a silicon oxide substrate. We find an adhesion energy of
0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples
containing 2-5 graphene sheets. These values are larger than the adhesion
energies measured in typical micromechanical structures and are comparable to
solid/liquid adhesion energies. We attribute this to the extreme flexibility of
graphene, which allows it to conform to the topography of even the smoothest
substrates, thus making its interaction with the substrate more liquid-like
than solid-like.Comment: to appear in Nature Nanotechnolog
Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes
The small mass and atomic-scale thickness of graphene membranes make them
highly suitable for nanoelectromechanical devices such as e.g. mass sensors,
high frequency resonators or memory elements. Although only atomically thick,
many of the mechanical properties of graphene membranes can be described by
classical continuum mechanics. An important parameter for predicting the
performance and linearity of graphene nanoelectromechanical devices as well as
for describing ripple formation and other properties such as electron
scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the
importance of this parameter it has so far only been estimated indirectly for
monolayer graphene from the phonon spectrum of graphite, estimated from AFM
measurements or predicted from ab initio calculations or bond-order potential
models. Here, we employ a new approach to the experimental determination of
{\kappa} by exploiting the snap-through instability in pre-buckled graphene
membranes. We demonstrate the reproducible fabrication of convex buckled
graphene membranes by controlling the thermal stress during the fabrication
procedure and show the abrupt switching from convex to concave geometry that
occurs when electrostatic pressure is applied via an underlying gate electrode.
The bending rigidity of bilayer graphene membranes under ambient conditions was
determined to be eV. Monolayers have significantly lower
{\kappa} than bilayers
Short distance and initial state effects in inflation: stress tensor and decoherence
We present a consistent low energy effective field theory framework for
parameterizing the effects of novel short distance physics in inflation, and
their possible observational signatures in the Cosmic Microwave Background. We
consider the class of general homogeneous, isotropic initial states for quantum
scalar fields in Robertson-Walker (RW) spacetimes, subject to the requirement
that their ultraviolet behavior be consistent with renormalizability of the
covariantly conserved stress tensor which couples to gravity. In the functional
Schr\"odinger picture such states are coherent, squeezed, mixed states
characterized by a Gaussian density matrix. This Gaussian has parameters which
approach those of the adiabatic vacuum at large wave number, and evolve in time
according to an effective classical Hamiltonian. The one complex parameter
family of squeezed states in de Sitter spacetime does not fall into
this UV allowed class, except for the special value of the parameter
corresponding to the Bunch-Davies state. We determine the finite contributions
to the inflationary power spectrum and stress tensor expectation value of
general UV allowed adiabatic states, and obtain quantitative limits on the
observability and backreaction effects of some recently proposed models of
short distance modifications of the initial state of inflation. For all UV
allowed states, the second order adiabatic basis provides a good description of
particles created in the expanding RW universe. Due to the absence of particle
creation for the massless, minimally coupled scalar field in de Sitter space,
there is no phase decoherence in the simplest free field inflationary models.
We apply adiabatic regularization to the renormalization of the decoherence
functional in cosmology to corroborate this result.Comment: 83 pages, 2 figures, minor changes in content and styl
- …