1,306 research outputs found

    Inflaton Decay in an Alpha Vacuum

    Full text link
    We study the alpha vacua of de Sitter space by considering the decay rate of the inflaton field coupled to a scalar field placed in an alpha vacuum. We find an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum and, surprisingly, no non-renormalizable divergences. We also consider a modified alpha dependent time ordering prescription for the Feynman propagator and show that it leads to an alpha independent result. This result suggests that it may be possible to calculate in any alpha vacuum if we employ the appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin

    Finite-temperature scalar fields and the cosmological constant in an Einstein universe

    Get PDF
    We study the back reaction effect of massless minimally coupled scalar field at finite temperatures in the background of Einstein universe. Substituting for the vacuum expectation value of the components of the energy-momentum tensor on the RHS of the Einstein equation, we deduce a relationship between the radius of the universe and its temperature. This relationship exhibit a maximum temperature, below the Planck scale, at which the system changes its behaviour drastically. The results are compared with the case of a conformally coupled field. An investigation into the values of the cosmological constant exhibit a remarkable difference between the conformally coupled case and the minimally coupled one.Comment: 7 pages, 2 figure

    Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    Get PDF
    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    Measuring anti-Americanism in editorial cartoons

    Get PDF
    Abstract: Objective-Anti-Americanism has been subjected to minimal statistical analysis. Further, scant attention is paid to what constitutes anti-Americanism for Americans. The objective of this article is to measure Americans' perceptions of anti-Americanism. Methods-Using a range of quantitative methods, including Pearson's correlation coefficient, Shannon's entropy measure, and Cohen's d statistics, we measure students' evaluations of editorial cartoons after 9/11. Twin measures of message and equity, along with participant and cartoon variables, are used to calibrate anti-Americanism in Spanish and U.S. editorial cartoons. Results-Our results indicate that message ratings, that is, anti-or pro-American, were more dependent on the nature of the cartoons than of the participants. White males rated these editorial cartoons as more equitable than other participants. The study shows that Spanish cartoons were rated significantly more anti-American. Conclusion-The article concludes that the use of U.S. icons is key to seeing anti-Americanism, along with gender, race, and origin of cartoon

    Renormalization of initial conditions and the trans-Planckian problem of inflation

    Get PDF
    Understanding how a field theory propagates the information contained in a given initial state is essential for quantifying the sensitivity of the cosmic microwave background to physics above the Hubble scale during inflation. Here we examine the renormalization of a scalar theory with nontrivial initial conditions in the simpler setting of flat space. The renormalization of the bulk theory proceeds exactly as for the standard vacuum state. However, the short distance features of the initial conditions can introduce new divergences which are confined to the surface on which the initial conditions are imposed. We show how the addition of boundary counterterms removes these divergences and induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe

    Ultra-strong Adhesion of Graphene Membranes

    Full text link
    As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Young's modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.Comment: to appear in Nature Nanotechnolog

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Short distance and initial state effects in inflation: stress tensor and decoherence

    Full text link
    We present a consistent low energy effective field theory framework for parameterizing the effects of novel short distance physics in inflation, and their possible observational signatures in the Cosmic Microwave Background. We consider the class of general homogeneous, isotropic initial states for quantum scalar fields in Robertson-Walker (RW) spacetimes, subject to the requirement that their ultraviolet behavior be consistent with renormalizability of the covariantly conserved stress tensor which couples to gravity. In the functional Schr\"odinger picture such states are coherent, squeezed, mixed states characterized by a Gaussian density matrix. This Gaussian has parameters which approach those of the adiabatic vacuum at large wave number, and evolve in time according to an effective classical Hamiltonian. The one complex parameter family of α\alpha squeezed states in de Sitter spacetime does not fall into this UV allowed class, except for the special value of the parameter corresponding to the Bunch-Davies state. We determine the finite contributions to the inflationary power spectrum and stress tensor expectation value of general UV allowed adiabatic states, and obtain quantitative limits on the observability and backreaction effects of some recently proposed models of short distance modifications of the initial state of inflation. For all UV allowed states, the second order adiabatic basis provides a good description of particles created in the expanding RW universe. Due to the absence of particle creation for the massless, minimally coupled scalar field in de Sitter space, there is no phase decoherence in the simplest free field inflationary models. We apply adiabatic regularization to the renormalization of the decoherence functional in cosmology to corroborate this result.Comment: 83 pages, 2 figures, minor changes in content and styl
    • …
    corecore