1,217 research outputs found

    Lighting as a Circadian Rhythm-Entraining and Alertness-Enhancing Stimulus in the Submarine Environment

    Get PDF
    The human brain can only accommodate a circadian rhythm that closely follows 24 hours. Thus, for a work schedule to meet the brain’s hard-wired requirement, it must employ a 24 hour-based program. However, the 6 hours on, 12 hours off (6/12) submarine watchstanding schedule creates an 18-hour “day” that Submariners must follow. Clearly, the 6/12 schedule categorically fails to meet the brain’s operational design, and no schedule other than one tuned to the brain’s 24 hour rhythm can optimize performance. Providing Submariners with a 24 hour-based watchstanding schedule—combined with effective circadian entrainment techniques using carefully-timed exposure to light—would allow crewmembers to work at the peak of their daily performance cycle and acquire more restorative sleep. In the submarine environment, where access to natural light is absent, electric lighting can play an important role in actively entraining—and closely maintaining—circadian regulation. Another area that is likely to have particular importance in the submarine environment is the potential effect of light to help restore or maintain alertness

    Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications

    Get PDF
    A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 ÎŒm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V

    Diverse supramolecular structures formed by self-assembling proteins of the B acillus subtilis spore coat

    Get PDF
    Bacterial spores (endospores), such as those of the pathogens Clostridium difficile and Bacillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. Bacillus subtilis is the best studied spore-former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B. subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in Escherichia coli can arrange intracellularly into highly stable macro-structures through processes of self-assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one-dimensional fibres, two-dimensional sheets and three-dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross-linking. Assemblies of this kind could form exquisitely adapted building blocks for higher-order assembly across all spore-formers. These physically robust arrayed units could also have novel applications in nano-biotechnology processes

    Electron Beam Nano-Etching in Oxides, Fluorides, Metals and Semiconductors

    Get PDF
    Etching, lithography, hole formation, surface restructuring and external machining can all be performed on a nanometre scale using an intense electron beam. Results are presented for a range of different materials which demonstrate the variety of mechanisms by which electron beam nano-etching can occur. For example, in crystalline 13-alumina hole formation occurs by surface indentations growing inwards to join up and form a nanometre diameter hole. In amorphous alumina, on the other hand, hole formation is from the inside-out: oxygen gas bubbles form under the electron beam, coalesce, and burst to leave a well defined nanometre diameter hole. In MgO and Si, holes develop from the electron exit surface: whereas in Al voids form along the irradiated volume, leading eventually to the development of a hole at the electron entrance surface. The potential of electron beam nano-etching to lithography and information storage is demonstrated by showing that the entire contents of the Encyclopaedia Britannica can be written on a pinhead

    Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis

    Get PDF
    We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may contribute to infection and loosening

    New Integrable Sectors in Skyrme and 4-dimensional CP^n Model

    Get PDF
    The application of a weak integrability concept to the Skyrme and CPnCP^n models in 4 dimensions is investigated. A new integrable subsystem of the Skyrme model, allowing also for non-holomorphic solutions, is derived. This procedure can be applied to the massive Skyrme model, as well. Moreover, an example of a family of chiral Lagrangians providing exact, finite energy Skyrme-like solitons with arbitrary value of the topological charge, is given. In the case of CPnCP^n models a tower of integrable subsystems is obtained. In particular, in (2+1) dimensions a one-to-one correspondence between the standard integrable submodel and the BPS sector is proved. Additionally, it is shown that weak integrable submodels allow also for non-BPS solutions. Geometric as well as algebraic interpretations of the integrability conditions are also given.Comment: 23 page

    Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases

    Full text link
    We calculate the dynamic single-particle and many-particle correlation functions at non-zero temperature in one-dimensional trapped repulsive Bose gases. The decay for increasing distance between the points of these correlation functions is governed by a scaling exponent that has a universal expression in terms of observed quantities. This expression is valid in the weak-interaction Gross-Pitaevskii as well as in the strong-interaction Girardeau-Tonks limit, but the observed quantities involved depend on the interaction strength. The confining trap introduces a weak center-of-mass dependence in the scaling exponent. We also conjecture results for the density-density correlation function.Comment: 18 pages, Latex, Revtex

    Completely integrable models of non-linear optics

    Full text link
    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    A New Nonlinear Liquid Drop Model. Clusters as Solitons on The Nuclear Surface

    Full text link
    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equations and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equation (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by the ratio of the square amplitudes in the two minima.Comment: 27 pages, LateX, 8 figures, Submitted J. Phys. G: Nucl. Part. Phys., PACS: 23.60.+e, 21.60.Gx, 24.30.-v, 25.70.e
    • 

    corecore