8,208 research outputs found

    Offering behavioral assistance to Latino students demonstrating challenging behaviors

    Get PDF
    Challenging behaviors can significantly alter the learning environment of any classroom. Traditionally, schools have implemented practices that remove the offending student from the classroom, deliver punitive disciplinary actions, or refer the student to special education evaluation. Unfortunately, such practices have demonstrated little longitudinal effectiveness, with detrimental outcomes for the referred student, particularly students from Latino backgrounds. With enrollment projections indicating Latinos will become the majority in U.S. schools, educators are presented with the opportunity to shift away from past practices and implement evidence-based practices that concurrently assist students while addressing challenging behaviors. In this paper, the authors discuss past disciplinary practices, the adverse effects on Latino students, and offer recommendations on implementing functional behavioral assessment as a means to better meet the needs of Latino students demonstrating challenging behaviors.peer-reviewe

    Strong coprimality and strong irreducibility of Alexander polynomials

    Get PDF
    A polynomial f(t) with rational coefficients is strongly irreducible if f(t^k) is irreducible for all positive integers k. Likewise, two polynomials f and g are strongly coprime if f(t^k) and g(t^l) are relatively prime for all positive integers k and l. We provide some sufficient conditions for strong irreducibility and prove that the Alexander polynomials of twist knots are pairwise strongly coprime and that most of them are strongly irreducible. We apply these results to describe the structure of the subgroup of the rational knot concordance group generated by the twist knots and to provide an explicit set of knots which represent linearly independent elements deep in the solvable filtration of the knot concordance group.Comment: 16 pages, 6 figure

    Prospects for computational steering of evolutionary computation

    Get PDF
    Currently, evolutionary computation (EC) typically takes place in batch mode: algorithms are run autonomously, with the user providing little or no intervention or guidance. Although it is rarely possible to specify in advance, on the basis of EC theory, the optimal evolutionary algorithm for a particular problem, it seems likely that experienced EC practitioners possess considerable tacit knowledge of how evolutionary algorithms work. In situations such as this, computational steering (ongoing, informed user intervention in the execution of an otherwise autonomous computational process) has been profitably exploited to improve performance and generate insights into computational processes. In this short paper, prospects for the computational steering of evolutionary computation are assessed, and a prototype example of computational steering applied to a coevolutionary algorithm is presented

    Youth opportunity spaces in low-emission dairy development in Kenya: Research findings and policy recommendations

    Get PDF
    The dairy sector in Kenya produces over 4 billion liters of milk per year and supports 1.3 million producer households with a vital contribution to incomes and nutrition. However, total national production fails to meet demand. There is a need for increased efforts to support value chain development growth in the sector. In addition to the potential of dairy to support economic growth, the dairy sector is receiving substantial attention as a pathway to achieve Kenya’s Nationally Determined Contributions (NDCs), commitments to international agreements to reduce greenhouse gas (GHG) emission intensities. Intensification of production would reduce emission intensities by generating a higher volume of milk per unit of GHG emission. However, Kenya’s NDCs specify that the environmental target of GHG emissions reduction should be pursued in accordance with its broader sustainable development agenda. Low-emission development has significant implications for reaching International Sustainable Development Goals; specifically, Decent Work and Economic Growth (SDG #8) and Gender Equality (SDG #5)

    A Vector-Integration-to-Endpoint Model for Performance of Viapoint Movements

    Full text link
    Viapoint (VP) movements are movements to a desired point that are constrained to pass through an intermediate point. Studies have shown that VP movements possess properties, such as smooth curvature around the VP, that are not explicable by treating VP movements as strict concatenations of simpler point-to-point (PTP) movements. Such properties have led some theorists to propose whole-trajectory optimization models, which imply that the entire trajectory is pre-computed before movement initiation. This paper reports new experiments conducted to systematically compare VP with PTP trajectories. Analyses revealed a statistically significant early directional deviation in VP movements but no associated curvature change. An explanation of this effect is offered by extending the Vector-Integration-To-Endpoint (VITE) model (Bullock and Grossberg, 1988), which postulates that voluntary movement trajectories emerge as internal gating signals control the integration of continuously computed vector commands based on the evolving, perceptible difference between desired and actual position variables. The model explains the observed trajectories of VP and PTP movements as emergent properties of a dynamical system that does not precompute entire trajectories before movement initiation. The new model includes a working memory and a stage sensitive to time-to-contact information. These cooperate to control serial performance. The structural and functional relationships proposed in the model are consistent with available data on forebrain physiology and anatomy.Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N0014-95-1-0409
    corecore