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Abstract

Currently, evolutionary computation (EC) typically
takes place in batch mode: algorithms are run au-
tonomously, with the user providing little or no interven-
tion or guidance. Although it is rarely possible to specify
in advance, on the basis of EC theory, the optimal evo-
lutionary algorithm for a particular problem, it seems
likely that experienced EC practitioners possess consid-
erable tacit knowledge of how evolutionary algorithms
work. In situations such as this, computational steering
(ongoing, informed user intervention in the execution
of an otherwise autonomous computational process) has
been pro�tably exploited to improve performance and
generate insights into computational processes. In this
short paper, prospects for the computational steering of
evolutionary computation are assessed, and a prototype
example of computational steering applied to a coevolu-
tionary algorithm is presented.

Introduction

The �eld of evolutionary computation (EC) is princi-
pally concerned with designing powerful search algo-
rithms modelled on natural evolution. Such algorithms
feature a population of individuals subjected to processes
analogous to the competition, selection, reproduction,
mutation, etc., that drive natural evolution. When suc-
cessful, these processes gradually alter the population
until it comprises high-quality solutions to the problem
that the individuals are competing to solve.
EC is used for combinatorial, numerical optimization

and design problems such as scheduling, routing, data
mining, software agent design, robot control, and opti-
mization for engineering design in general (e.g., Gen &
Cheng, 1997). It is particularly useful when problems
are poorly understood and large enough to render ex-
haustive search or analytic approaches intractable.
The evolving populations involved in EC are high-

dimensional, time-varying systems that exhibit complex
and often counter-intuitive dynamics across a variety of
time-scales and at many di�erent levels of organisation.
Understanding how and why such systems behave in the
ways that they do is crucial if we are to harness the cre-
ative and design potential of evolutionary algorithms.

While there has been considerable e�ort towards devel-
oping EC theory capable of explaining how, why, and
when EC techniques are e�ective, we are still some way
from possession of anything more useful than guidelines
and rules of thumb.
Discovering eÆcient and intuitive ways to visualize the

behaviour of these systems is one method of generating
insights into the way that they work. Surprisingly, there
has been relatively little well-founded research in this
area. While members of the EC community have devel-
oped many idiosyncratic (and often short-lived) graph-
ing techniques with which to display the behaviour of
particular systems, overall there remains a reliance on
rather simplistic plots of population summary statistics
over time|visualizations that by their nature disguise
much of the system complexity.
In this short paper, the state of EC visualization will

�rst be brie
y reviewed, before its potential role in fa-
cilitating computational steering is introduced and dis-
cussed. An example of a simple application of com-
putational steering to a coevolutionary system will be
presented. The prospects for successful application of
computational steering techniques to evolutionary algo-
rithms in general will be assessed, and the potential for
this approach to progress EC theory and the exploita-
tion of EC in industrial and commercial contexts will be
estimated.

EC Visualization

The recent increase in a�ordable computing power (in
terms of speed, storage, and graphics) has seen a growing
interest in increasingly sophisticated EC visualization.
For recent reviews, see Hart and Ross (2001) and Collins
(in press).
The techniques that have been developed to visual-

ize evolutionary algorithms can be categorised in several
ways. Some are snapshots of algorithm performance over
time presented postmortem as a single, static view, while
some are dynamic animations depicting \on-line" the
way in which the algorithm changes over time. Some
represent the evolving population, some the character
of the problem being solved. Visualizations have been



developed at several levels of description, from present-
ing population-level summary statistics, through distri-
butions of individual-level variables, to gene- or loci-level
representations.

While a wide variety of visualization tools have been
developed across these categories, few have been pub-
lished outside of technical reports (e.g., Kapsalis &
Smith, 1992; Dabs & Schoof, 1995; Collins, 1998b;
Bosman, 1999; Wu, De Jong, Burke, Ramsey, & Grefen-
stette, 1999; Pohlheim, 2001; Hart & Ross, 2001). Often
these visualizations were built in order to understand the
behaviour of a speci�c EC system as that system was
developed, and were subsequently generalized to some
degree. As a result, the intended user audience typically
appears to be EC researchers studying how algorithms
work, rather than industrialists exploiting EC to solve
particular problems, modellers using EC to simulate nat-
ural systems, or EC tutors teaching evolutionary algo-
rithms to students. Moreover, the needs and abilities of
the intended users are rarely considered explicitly, and
there has been little exploration of the usability or ef-
fectiveness of the visualization systems. In the few cases
where these issues have been addressed, it has been in
terms of requirements capture from EC users (Collins,
1998a), and usability assessment in an experimental set-
ting (Wiles & Tonkes, 2002).

The range of visualization tools employed includes
standard techniques such as various types of multi-
dimensional scaling (e.g., Spears, 1994; Collins, 1999;
Pohlheim, 1999), Sammon mapping (Sammon 1969;
Dawinel 1994; employed by Dybowski, Collins, & Weller,
1996) and quadcodes (Li & Loewn, 1987; independently
developed by Collins, 1997; Shine & Eick 1997; Wiles
& Tonkes, 2002), and entirely novel approaches devel-
oped speci�cally for dealing with EC issues such as tech-
niques for representing genotypic changes over evolution-
ary time (Wu et al., 1999; Hart & Ross, 2001). None
of these platforms or techniques has achieved signi�cant
penetration in the EC community, as of yet.

A largely independent stream of research relies on EC
theory to inform visualization by suggesting what type
of data will be informative, in what way, and in which
situations. In addition to generating useful visualization
tools, this approach is intended to progress EC theory
by providing a richer appreciation of the behaviour of
EC systems. When successful, this integration should
result in cross-fertilisation of theory and visualization,
with ideas, techniques and insights from each driving
forward the other.

Studies that have combined EC visualization and the-
ory in this way are still relatively rare. For instance, Cli�
and Miller (1995) propose a visualization technique for
detecting cycling in coevolutionary systems, Harvey and
Thompson (1996) explore the use of various visualization
methods in order to explain the role of neutral ridges in

the evolutionary search space, Bedau and Brown (1998)
visualize an evolutionary activity metric, and Bullock
(2001) uses visualization to demonstrate the biases in-
herent in a range of mutation operators.

In summary there is thus considerable potential to
build on these initial studies. Perhaps the most press-
ing issues concern requirements capture and formal eval-
uation. As yet the di�erent needs and abilities of
the various types of EC end-user (novices, experts, re-
searchers, industrialists, tutors, students, etc.) are not
well-characterised. Moreover, the usability and e�ective-
ness of existing visualization techniques are poorly un-
derstood. More attention to both of these aspects of EC
visualization research are necessary in order to develop
tools that e�ectively meet user requirements.

One further under-explored area of research will be
discussed below, that of developing interactive visual-
ization tools to support computational steering.

EC Steering

EC algorithms are typically executed in \batch mode".
A stereotypical scenario might be as follows: 1. param-
eters are set and decisions are made regarding the type
and amount of data that the algorithm will produce as
output. 2. the algorithm is then executed, often taking
hours if not days or weeks of compute time. 3. during ex-
ecution there is little if any interaction with the system|
output may be graphed intermittently; the search pro-
cess may be terminated if it appears to have failed.
4. upon completion the solutions produced by the algo-
rithm are assessed, and any data output by the algorithm
is graphed. 5. on the basis of this information, param-
eters may be altered, or more signi�cant changes may
be made to the algorithm, before it is executed again,
hopefully with improved performance.

A combination of batch processing and simple graphs
of population summary statistics changing over evolu-
tionary time is inadequate in two respects: (i) signi�cant
interaction can only take place once the algorithm has
(been) terminated, (ii) the information upon which this
interaction is based is crude and fragmented.

At the opposite extreme, some interactive evolution-
ary algorithms require user guidance at every generation
in the form of arti�cial selection|the user must choose
which members of the population are good enough
to contribute genetic material to the next generation.
Without user instruction, such algorithms halt. Under-
standably, given the demands on user time imposed by
algorithms of this kind, they are typically only consid-
ered in cases where it is hard or impossible to opera-
tionalise an accurate �tness function, e.g., where �tness
is subjective. Examples include the aesthetic evolution
of a solution tailored to a particular person's taste, or of
works of art (Dorin, 2001).

Computational steering|de�ned here as the ongoing,



informed intervention of users in the execution of an
otherwise autonomous computational process (see, e.g.,
Parker, Johnson, & Beazley, 1997)|lies somewhere be-
tween these two extremes. Just as air-traÆc controllers
engage in a continuous dialogue with the planes that
they are responsible for, guiding their behaviour via a
series of heavily stereotyped interactions on the basis of
information relayed to them in a variety of ways, so com-
putational steering applications allow users to manually
interact with or \steer" computational processes. It is
important to recognise that, just as planes continue to

y as best they can in the absence of air-traÆc control,
during computational steering a user does not determine
the behaviour of a computational process, but rather
only in
uences it. Typical interventions might include
altering system parameters, turning on or o� aspects of
the algorithm, etc.

As with the manually-driven aesthetic evolution de-
scribed above, computational steering tends to be used
in situations where the skills and knowledge of human
users are critical to system performance, but are diÆ-
cult or impossible to operationalise as computer code.
For example, the pattern recognition skills of air-traÆc
controllers are key to the success of air-traÆc control
systems. If it were possible to replicate these skills com-
putationally we might not need to rely on humans in the
system at all.

Prospects

Are there reasons to believe that enabling people to steer
evolutionary algorithms is desirable, let alone attain-
able? Successful computational steering could achieve
two important results. First, e�ective steering may im-
prove system performance in terms of eÆciency and qual-
ity. Second, computational steering may lead to insights
into how the system works, making explicit the tacit
knowledge that users employ in their steering behaviour.
In the case of evolutionary computation, we are sorely
in need of both. Although the evolutionary computa-
tion community remains healthy, there is little evidence
that there are important classes of search or optimization
problems for which it can persuasively be claimed that
evolutionary algorithms are likely to outperform compet-
ing approaches. That this is the case is largely due to the
lack of theoretical insights into what makes evolutionary
algorithms work when they do. As such, computational
steering o�ers a signi�cant opportunity to progress evo-
lutionary computing on two important and inter-related
fronts.

In addition, there are some secondary reasons for pur-
suing this line of research. First, computational steer-
ing will require sophisticated visualization of evolution-
ary algorithms, a worthy research aim in its own right.
Second, computational steering is likely to be of use
in teaching novices how evolutionary algorithms behave

(and perhaps how evolution itself works).

But what chance is there that it will work? In or-
der for computational steering to succeed, users must be
able to make e�ective interventions. Three conditions
must be met in order to achieve this. First, users must
possess knowledge, understanding, skills, etc. that could
be used to e�ectively steer computation (expertise). Sec-
ond, users must be able to exert the required in
uence on
the system in an intuitive manner (interaction). Third,
they must be presented with the information that they
require in order to make these interventions in a similarly
intuitive manner (visualization).

It is as yet unclear to what extent the existing EC
visualization techniques described above meet this last
condition. What information might EC users require in
order to make e�ective interventions? Measures of pop-
ulation make-up such as diversity (Bedau, Ronneburg,
& Zwick, 1992), evolutionary activity (Bedau & Brown,
1998), etc? Measures of landscape properties such as
ruggedness (Weinberger, 1990; Stadler, 1996; Hordijk,
1997; Vassilev, Fogarty, & Miller, 2000), neutrality (Bar-
nett 1998; Bullock 2001, in press; Smith, Husbands,
Layzell & O'Shea, 2002), evolvability (Smith, Husbands,
& O'Shea, 2001), etc? Some success has been achieved
applying computational steering to design optimization
algorithms by using quality-coloured representations of
trajectories in design space (Wright, Brodlie, & David,
2000), but much remains to be done in this area.

It is perhaps useful to divide the work that has been
devoted to developing rich modes of interaction with
evolutionary algorithms, of which there has been rela-
tively little, into two aspects. First, users need to be
able to manipulate the visualizations that they are pro-
vided with. Amongst others, Collins (1998a) has intro-
duced the basic elements of this type of interaction, e.g.,
alpha-sliders with which to dynamically alter the por-
tion of the data set being viewed, and the various scales
at which it is represented. The second aspect of EC
interaction is largely unexplored: real-time alteration
of an EC algorithm's operation through, for instance,
changing parameter values (e.g., mutation rate, popula-
tion size), turning on/o� aspects of an algorithm (e.g.,
sexual reproduction, elitism), or exerting temporal con-
trol through rewinding, restarting, etc. Although this
type of research will mostly involve human-computer in-
teraction issues, there are also practical concerns. How
much user time would need to be devoted to steering
an evolutionary algorithm? At what points in an evo-
lutionary run is steering most pro�table? How much
expertise is required in order to e�ectively steer an evo-
lutionary algorithm? Given the highly parallel nature of
the processes being steered, might collaborative steering
be appropriate (Wood, Wright, & Brodlie, 1997)?

However, it is the �rst of the three conditions listed
above that has received the least consideration (at least



in print). Just how likely is it that expert EC users have
the wherewithal to successfully guide evolutionary pro-
cesses? Is there a wealth of tacit knowledge that EC ex-
perts could successfully bring to bear on EC algorithms
as they execute? Given the gap that exists between the
published canon of formal EC theory and the working
knowledge possessed by the EC community, there are
grounds to believe that the answers are positive. How-
ever, as yet we simply do not know.

An Example

As an illustrative example, we will brie
y present a very
simple application of computational steering to a coevo-
lutionary problem. The software is currently in the early
stages of development, but will serve out purposes here.

Previous research has explored the problem of coevo-
lutionary disengagement: periods during which one co-
evolving population outperforms its coevolutionary op-
ponent population to the extent that competing indi-
viduals achieve near-identical �tness scores (Watson &
Pollack, 2001). During these periods, selection pres-
sure disappears and populations su�er from evolution-
ary drift, stagnating as deleterious mutations are accu-
mulated. Avoiding coevolutionary disengagement (along
with over-focusing and cycling) could signi�cantly im-
prove the performance of coevolutionary optimization
algorithms.

It has been demonstrated that reducing population
\virulence" (the extent to which members of one popula-
tion are selected to maximally defeat members of an op-
ponent population) lowers the probability of disengage-
ment (Cartlidge & Bullock, 2002). When populations
are highly engaged, strong antagonistic selection pres-
sures of the kind normally implemented in competitive
coevolutionary search algorithms drive populations for-
ward. However, as coevolving populations become less
engaged, selection for increasingly mild virulence (i.e.,
selecting for individuals who achieve less than 100% suc-
cess against their coevolutionary opponents) encourages
increased engagement and thereby reduces the chance
of the stagnation that accompanies evolutionary drift.
These results, although perhaps counterintuitive in the
context of evolutionary optimization, are reminiscent of
natural parasite-host coevolution, where it is often not
in the best interests of a parasite to maximally exploit
its host.

As yet, we do not understand how to automatically
vary coevolutionary selection pressures such that they
suit the degree of engagement that populations experi-
ence. In order to move towards such an automatic al-
gorithm, we are pursuing a computational steering ap-
proach in which the selection pressures exerted on hosts
and parasites as they coevolve are under the control of a
user. On the basis of visually presented information con-
cerning the �tness distributions being achieved by each

population, users must vary two algorithm parameters
in an e�ort to maintain engagement and maximise pop-
ulation �tness.

Figure 1 depicts the steering interface. The two plots
at the right of the panel present graphs of �tness over
time, and are updated as the populations coevolve. The
two plots at the top left of the panel depict the charac-
ter of the selection pressure exerted on each coevolving
population. Sliders beneath these latter plots allow the
user to vary selection pressure. The information in the
lower left portion of the panel concern various algorithm
parameters.

This platform will be used to carry out several kinds
of study. For some purposes, parts of the interface can
be removed, or �xed. In this way, more of less complex
interfaces can easily be constructed. First, experiments
will compare the performance of naive users with experts
as they attempt to e�ectively steer coevolutionary opti-
mization under various conditions. These subjects will
be carefully debriefed in an e�ort to understand how
they went about their task. Any insights gained could
be used to design more eÆcient automatic coevolution-
ary algorithms.

In addition, the platform will be used directly by re-
searchers as a tool with which to explore coevolution-
ary disengagement. The nature of the platform allows a
rich interaction with the coevolutionary system, which
will hopefully lead to improved insights into algorithm
behaviour. Finally, the steering platform will be used
to present results in an intuitive way at meetings, etc.,
and to teach coevolutionary concepts to students in a
hands-on manner that will hopefully be engaging and
informative.

It must be noted that this example of computational
steering is very crude in many respects. The visualiza-
tions used to inform the user of algorithm behaviour are
for the most part standard plots of �tness over time. In
general, much more sophisticated indicators of a wider
range of system aspects could be employed. Similarly,
the range of interaction supported by the example steer-
ing platform is limited to varying a small number of the
parameters governing evolutionary selection pressures.
There are, of course, many alternative aspects of algo-
rithm performance that could be in
uenced by the user.
However, we expect the steering interface to be an ade-
quate tool for the speci�c purposes of exploring the role
of virulence in coevolutionary engagement.

Conclusions

Working towards e�ective computational steering for
evolutionary computation would appear to have consid-
erable merit if there is some chance of achieving the im-
provements in algorithm performance and insights into
algorithm behaviour that it may bring. However, even
if such a research e�ort were to fail in its stated pri-



Figure 1: An interface for steering a coevolutionary algorithm. See text for details.

mary aim, in pursuing it several secondary goals would
be progressed.

First, e�ective visualization and interaction are wor-
thy targets in their own right, as the other papers at
this workshop testify. Second, and perhaps more impor-
tantly, in integrating visualization, interaction and EC
theory, research into computational steering for evolu-
tionary computation has the potential to improve our
understanding of all three. To the extent that visualiza-
tion and interaction techniques are motivated by some
theory of evolutionary computation, the ability of these
techniques to support computational steering is a good
indicator of the success of EC theory in guiding our un-
derstanding of evolutionary algorithms.
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