9 research outputs found

    Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies

    Get PDF
    Fc γ receptor (FcγR) coengagement can facilitate antibody-mediated receptor activation in target cells. In particular, agonistic antibodies that target tumor necrosis factor receptor (TNFR) family members have shown dependence on expression of the inhibitory FcγR, FcγRIIB. It remains unclear if engagement of FcγRIIB also extends to the activities of antibodies targeting immunoregulatory TNFRs expressed by T cells. We have explored the requirement for activating and inhibitory FcγRs for the antitumor effects of antibodies targeting the TNFR glucocorticoid-induced TNFR-related protein (GITR; TNFRSF18; CD357) expressed on activated and regulatory T cells (T reg cells). We found that although FcγRIIB was dispensable for the in vivo efficacy of anti-GITR antibodies, in contrast, activating FcγRs were essential. Surprisingly, the dependence on activating FcγRs extended to an antibody targeting the non-TNFR receptor CTLA-4 (CD152) that acts as a negative regulator of T cell immunity. We define a common mechanism that correlated with tumor efficacy, whereby antibodies that coengaged activating FcγRs expressed by tumor-associated leukocytes facilitated the selective elimination of intratumoral T cell populations, particularly T reg cells. These findings may have broad implications for antibody engineering efforts aimed at enhancing the therapeutic activity of immunomodulatory antibodies

    The Interplay between Cytidine Deaminases, HIV and Domesticated Genetic Parasites

    No full text
    "There is more virus in us than us in us". John Coffin's famous sentence illustrates that particular nucleic acid sequences related to exogenous viruses, called retrotransposons, constitute almost half of the human genome and largely exceeds the amount of protein-coding DNA (section 1.4). At the beginning of the past century, biologists realized the size of the genomes of various eukaryotes did not correlate with the level of complexity of these species. In extreme cases, certain species such as the fish L.paradoxa had 30-times more genomic DNA than do primates. In 1980, Francis Crick and Carmen Sapienza independently postulated that part of this once-called "junk DNA" must stem from self-replicating units, categorized as "selfish DNA" to distinguish them from more "altruistic" cellular genes. Indeed, while genes amplify in a population because of the selective advantage they confer to their host, the selfish DNA amplifies without making any contribution to the host phenotype and survives rather as a not-too-deleterious parasite. In early 2000's, the accomplishment of the human genome sequencing projects gave formal credence to Crick's and Sapienza's initial hypothesis. Retrotransposons replicate in the genome of their host by a copy-and-paste mechanism. Accordingly, any new retrotransposition event causes a genetic alteration potentially detrimental to the host. On an evolutionary perspective however, accumulation of retrotransposon-derived sequences can be beneficial to the species after these once "selfish" elements become "domesticated" to deserve more physiological roles. In human or mouse for instance, retrotransposons are known to cover a large spectrum of cellular functions, from gene regulation to antiviral defense (section 1.6). In order to maintain under tight control the balance between the good and adverse effects of retroelements, eukaryotes have evolved cellular defenses aimed at inhibiting the replication of such elements (section 1.7). Gene silencing by DNA methylation is a mechanism widely used in plants, fungi or vertebrates to control the expression of self-replicating elements. For instance in mammals, specific KRAB-zinc finger proteins can target retroviral-derived sequences and mediate their transcriptional silencing (section 3). The first aim of this study was to characterize the sensitivity of retroviruses to KRAB-mediated epigenetic silencing in varied chromosomal contexts (section 5). Since some retroviruses like HIV favor integration within transcriptionally active regions, these viruses may escape blockade by integrating chromosomal area refractory to epigenetic silencing. We found that instead, KRAB-mediated repression mechanism was not dependent upon integration site of a retroviral vector, hence the emergence of viruses escaping KRAB-mediated repression would be unlikely. Mammalian cells are also able to control the replication of retrotransposons at a post-transcriptional level via the APOBEC3 family of cytidine deaminases (section 2). Since certain retrotransposons are related to exogenous retroviruses, it is perhaps not surprising that APOBEC3 proteins can also inhibit a range of such elements including HIV. While there is only one APOBEC3 gene in the mouse genome, the family considerably expanded in other species such as primates were it comprises seven members (section 2.1). Although it is tempting to postulate that the expansion of the family in primates was driven by the strong selective pressure imposed by various genetic threats growing in number and complexity, it is not understood how only a few homologous proteins can target such a disparate group of replicating elements. The second aim of this study was to understand the mechanism by which different APOBEC3 proteins can target and inactivate particular self-perpetuating elements (section 4). We launched an integrative study focused on two human APOBEC3 homologues with distinct antiviral functions. APOBEC3A, a single-domain cytidine deaminase, can block efficiently the parvovirus adeno-associated virus type 2 (AAV-2) or the retrotransposon LINE-1 but cannot inhibit HIV replication. APOBEC3G is formed of two independent cytidine deaminase domains, only the C-terminal of which is catalytically active. APOBEC3G is endowed with restriction activity against HIV, but is largely ineffective against AAV-2 or LINE-1. We combined functional studies with structural modeling and phylogenetic analyses and found that restriction in each case involved similar regions at the surface of the protein and nearby the catalytic center, yet with distinct shapes and nucleic-acid interacting properties between the homologous proteins. While on APOBEC3G, the amino-acids in this region mediate intersubunit contacts between monomers and the predicted dimer interface shapes a groove that may facilitate binding to single-stranded RNA, on APOBEC3A however, it is corresponding residues on the monomer that form a DNA-binding groove important for editing. In summary, this study describes the nucleic-acid-interacting domains of APOBEC3A and APOBEC3G essential for their intrinsic restriction activities, and further suggests that structural variations in this domain may contribute to define the sets of targets inhibited by each APOBEC3 protein. APOBEC3 proteins may be considered as modular units, whose restriction function can evolve with emerging selective pressures by specific variations in their nucleic-acid binding domain, alternatively by fusion of two APOBEC3 proteins endowed with different functionalities. APOBEC3 proteins would efficiently protect the genome integrity of their host against highly variable genetic threats or "selfish DNA", in combination with other restriction factors such as the KRAB-zinc finger proteins. Contrary to epigenetic silencing however, post-transcriptional restriction as provided by APOBEC3 proteins may prohibit the deleterious effect of retrotransposition, without altering other retroelement functions putatively important for the physiology of the cell

    Type 3 peptide deformylases are required for oxidative phosphorylation in Trypanosoma brucei

    Get PDF
    Peptide deformylase (PDF) catalyses the removal of the formyl group from the first methionine of nascent proteins. Type 1 PDFs are found in bacteria and have orthologues in most eukaryotes. Type 2 PDFs are restricted to bacteria. Type 3 enzymes are found in Archaea and trypanosomatids and have not been studied experimentally yet. Thus, TbPDF1 and TbPDF2, the two PDF orthologues of the parasitic protozoa Trypanosoma brucei, are of type 3. An experimental analysis of these enzymes shows that both are mitochondrially localized, but that only TbPDF1 is essential for normal growth. Recombinant TbPDF1 exhibits PDF activity with a substrate specificity identical to that of bacterial enzymes. Consistent with these results, TbPDF1 is required for oxidative but not for mitochondrial substrate-level phosphorylation. Ablation of TbPDF2, in contrast, does neither affect growth on standard medium nor oxidative phosphorylation. However, a reduced level of TbPDF2 slows down growth in a medium that selects for highly efficient oxidative phosphorylation. Furthermore, combined ablation of TbPDF1 and TbPDF2 results in an earlier growth arrest than is observed by downregulation of TbPDF1 alone. These results suggest that TbPDF2 is functionally linked to TbPDF1, and that it can influence the efficiency of oxidative phosphorylation

    OX86 mediates depletion of OX40-expressing intratumoral regulatory T cells through Fc receptor co-engagement, leading to potent anti-tumor efficacy

    No full text
    Antibodies targeting T cell receptors have shown remarkable antitumor efficacy in preclinical and clinical studies. The engagement of activating Fc receptor (FcR)-expressing immune cells was recently shown to mediate the tumoricidal efficacy of antibodies recognizing GITR and CTLA-4. Activating FcRs facilitated the selective elimination of intratumoral T cell populations. However, it remains unclear whether FcRs contribute to the antitumor efficacy of other well-known surrogate immunomodulatory antibodies. To extend this thesis, we explored the mechanism of antitumor activity mediated by an anti-OX40 antibody (clone OX86). Like GITR and CTLA-4, OX40 was highly expressed by intratumoral T cells, particularly those of the regulatory T cell lineage. OX86 administration resulted in the strong depletion of intratumoral regulatory T cells in an activating-FcR dependent manner, which also correlated with tumor regression. We propose a paradigm, whereby antibodies targeting antigens highly expressed on intratumoral T cells leads to their elimination by FcR-expressing immune cells, which promotes antitumor immunity

    Functional Analysis and Structural Modeling of Human APOBEC3G Reveal the Role of Evolutionarily Conserved Elements in the Inhibition of Human Immunodeficiency Virus Type 1 Infection and Alu Transposition▿ †

    Get PDF
    Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function

    Prototype Foamy Virus Bet Impairs the Dimerization and Cytosolic Solubility of Human APOBEC3G

    No full text
    Cellular cytidine deaminases from the APOBEC3 family are potent restriction factors able to block the replication of retroviruses. Consequently, retroviruses have evolved a variety of different mechanisms to counteract inhibition by APOBEC3 proteins. Lentiviruses such as Human immunodeficiency virus (HIV) express Vif that interferes with APOBEC3 proteins by targeting the restriction factors for proteasomal degradation, hence blocking their ability to access the reverse transcriptase complex in the virions. Other retroviruses use less well characterized mechanisms to escape APOBEC3s' mediated cellular defence. Here we show that Prototype foamy virus Bet can protect foamy viruses and an unrelated simian immunodeficiency virus against human APOBEC3G (A3G). In our system, Bet binds to A3G and prevents its encapsidation without inducing its degradation. Bet failed to co-immunoprecipitate with A3G mutants unable to form homodimers, and dramatically reduced the recovery of A3G proteins from soluble cytoplasmic cell fractions. The Bet - A3G interaction is probably a direct binding and seems to be independent of RNA. Together, this data suggest a novel model whereby Bet uses two possibly complementary mechanisms to counteract A3G: (1) Bet prevents encapsidation of A3G by blocking A3G dimerization, and (2) sequesters A3G in immobile complexes, impairing its ability to interact with nascent virions

    4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells.

    No full text
    BACKGROUND: Co-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to nuclear factor kappa B (NF-κB) signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain. METHODS: We hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with either 4-1BB or mut06 together with the combination of both and evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed lymphocyte-specific protein tyrosine kinase (LCK) recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NOD scid gamma (NSG) mice. We also engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1 RESULTS: Co-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased central memory phenotype, expansion, and LCK recruitment to the CAR. This enhanced function was dependent on the positioning of the two co-stimulatory domains. A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers. Bi-specific CAR T cells exhibited improved in vivo antitumor activity with increased persistence and decreased exhaustion. CONCLUSION: These results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono-specific and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients
    corecore