7,121 research outputs found
Recommended from our members
The microstratigraphy of middens: capturing daily routine in rubbish at Neolithic Çatalhöyük, Turkey
Microstratigraphy — the sequencing of detailed biological signals on site — is an important new approach being developed in the Çatalhöyük project. Here the authors show how microscopic recording of the strata and content of widespread middens on the tell are revealing daily activities and the selective employment of plants in houses and as fuel. Here we continue to witness a major advance in the practice of archaeological investigation.</jats:p
Flight test pilot evaluation of a delayed flap approach procedure
Using NASA's CV-990 aircraft, a delayed flap approach procedure was demonstrated to nine guest pilots from the air transport industry. Four demonstration flights and 37 approaches were conducted under VFR weather conditions. A limited pilot evaluation of the delayed flap procedure was obtained from pilot comments and from questionaires they completed. Pilot acceptability, pilot workload, and ATC compatibility were quantitatively rated. The delayed flap procedure was shown to be feasible, and suggestions for further development work were obtained
Delayed flap approach procedures for noise abatement and fuel conservation
The NASA/Ames Research Center is currently investigating the delayed flap approach during which pilot actions are determined and prescribed by an onboard digital computer. The onboard digital computer determines the proper timing for the deployment of the landing gear and flaps based on the existing winds and airplane gross weight. Advisory commands are displayed to the pilot. The approach is flown along the conventional ILS glide slope but is initiated at a higher airspeed and in a clean aircraft configuration that allows for low thrust and results in reduced noise and fuel consumption. Topics discussed include operational procedures, pilot acceptability of these procedures, and fuel/noise benefits resulting from flight tests and simulation
Flight tests of IFR landing approach systems for helicopters
Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed
A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets
In nonparametric statistical problems, we wish to find an estimator of an
unknown function f. We can split its error into bias and variance terms;
Smirnov, Bickel and Rosenblatt have shown that, for a histogram or kernel
estimate, the supremum norm of the variance term is asymptotically distributed
as a Gumbel random variable. In the following, we prove a version of this
result for estimators using compactly-supported wavelets, a popular tool in
nonparametric statistics. Our result relies on an assumption on the nature of
the wavelet, which must be verified by provably-good numerical approximations.
We verify our assumption for Daubechies wavelets and symlets, with N = 6, ...,
20 vanishing moments; larger values of N, and other wavelet bases, are easily
checked, and we conjecture that our assumption holds also in those cases
The Voluntary Adjustment of Railroad Obligations
Automatic memory management techniques eliminate many programming errors that are both hard to find and to correct. However, these techniques are not yet used in embedded systems with hard realtime applications. The reason is that current methods for automatic memory management have a number of drawbacks. The two major ones are: (1) not being able to always guarantee short real-time deadlines and (2) using large amounts of extra memory. Memory is usually a scarce resource in embedded applications. In this paper we present a new technique, Real-Time Reference Counting (RTRC) that overcomes the current problems and makes automatic memory management attractive also for hard real-time applications. The main contribution of RTRC is that often all memory can be used to store live objects. This should be compared to a memory overhead of about 500% for garbage collectors based on copying techniques and about 50% for garbage collectors based on mark-and-sweep techniques
The Application of Convolutional Neural Networks to Detect Slow, Sustained Deformation in InSAR Time Series
Automated systems for detecting deformation in satellite InSAR imagery could
be used to develop a global monitoring system for volcanic and urban
environments. Here we explore the limits of a CNN for detecting slow, sustained
deformations in wrapped interferograms. Using synthetic data, we estimate a
detection threshold of 3.9cm for deformation signals alone, and 6.3cm when
atmospheric artefacts are considered. Over-wrapping reduces this to 1.8cm and
5.0cm respectively as more fringes are generated without altering SNR. We test
the approach on timeseries of cumulative deformation from Campi Flegrei and
Dallol, where over-wrapping improves classication performance by up to 15%. We
propose a mean-filtering method for combining results of different wrap
parameters to flag deformation. At Campi Flegrei, deformation of 8.5cm/yr was
detected after 60days and at Dallol, deformation of 3.5cm/yr was detected after
310 days. This corresponds to cumulative displacements of 3 cm and 4 cm
consistent with estimates based on synthetic data
- …