55 research outputs found

    Primjena optičkog mjernog sustava Aramis za određivanje mehaničkih svojstava materijala

    Get PDF
    Korištenje optičkih metoda za praćenje deformiranja tijela uslijed opterećenja posebno se proširilo u posljednjem desetljeću. Algoritmom digitalne korelacije slike mjere se pomaci točaka na površini tijela iz kojih se izračunavaju površinske komponente tenzora deformacije. U ovom radu primijenjen je optički sustav Aramis za određivanje elastičnih svojstava materijala. Osim na izotropnom materijalu, određena su svojstva i na anizotropnom kompozitnom materijalu s izraženim stupnjem anizotropije kod kojeg se svojstva značajno mijenjaju u ovisnosti o orijentaciji materijala. U radu su također opisani kompozitni materijali s posebnim osvrtom na mehanička svojstva istih, zatim način određivanja komponenti tenzora elastičnosti za izotropne i anizotropne materijale i postupak pripreme i mjerenja s optičkim sustavom Aramis. Eksperiment je proveden na dovoljnom broju uzoraka kako bi se mogle odrediti sve komponente tenzora elastičnosti

    Proračun izgaranja Ottovog motora primjenom 3-D CFD proračuna

    Get PDF
    U ovome radu je na temelju zadane geometrije eksperimentalnog Ottovog motora izrađen 3-D CFD simulacijski model te je proveden niz proračuna pri različitim uvjetima rada. Prikazan je način izrade i provedena je analiza kakvoće pomične mreže kontrolnih volumena. Proračun je izvršen za visokotlačni dio radnog ciklusa, tj. od trenutka zatvaranja usisnih ventila (UVZ) do trenutka otvaranja ispušnog ventila (IVO). Početni uvjeti definirani su na temelju eksperimentalnih rezultata i podataka iz AVL Boost modela motora, dok su rubni uvjeti određeni prema eksperimentalnim podacima i dostupnoj literaturi. Prikazana je parametarska analiza utjecaja nepoznatih parametara modela izgaranja i zapaljenja na rezultate. Model je podešen na jednoj radnoj točki čime se postiže dobro poklapanje s eksperimentalnim rezultatima. S tako podešenim modelom provedeni su i proračuni pri promijenjenim uvjetima kuta pretpaljenja te su prikazani rezultati za tlak, temperaturu, brzinu oslobađanja topline, ukupno oslobođenu toplinu, turbulentnu kinetičku energiju, itd.. \Na temelju rezultata izvedeni su zaključci vezani uz korištene mreže kontrolnih volumena, modele zapaljenja i model izgaranja

    Fast 4D tensile test monitored via X-CT: Single projection based Digital Volume Correlation dedicated to slender samples

    Get PDF
    International audienceThe measurement of 4D (i.e., 3D space and time) displacement fields of in situ tests within X-ray Computed Tomography scanners (i.e., lab-scale X-CT) is considered herein using projection-based Digital Volume Correlation. With one single projection per loading (i.e. time) step, the developed method allows for loading not to be interrupted and to vary continuously during the scan rotation. As a result, huge gains in acquisition time (i.e., more than two orders of magnitudes) to be reached. The kinematic analysis is carried out using predefined space and time bases combined with model reduction techniques (i.e., Proper Generalized Decomposition with space-time decomposition). The accuracy of the measured kinematic basis is assessed via gray level residual fields. An application to an in situ tensile test composed of 127 time steps is performed. Because of the slender geometry of the sample, a specific beam space regularization is used, which is composed of a stack of rigid sections. Large improvements on the residual, whose SNR evolves from 9.9 dB to 26.7 dB, validate the procedure

    On strain and damage interactions during tearing: 3D in situ measurements and simulations for a ductile alloy (AA2139-T3)

    No full text
    International audienceStrain and damage interactions during tearing of a ductile Al-alloy with high work hardening are assessed in situ and in 3D combining two recently developed experimental techniques, namely, synchrotron laminography and digital volume correlation. Digital volume correlation consists of registering 3D laminography images. Via simultaneous assessments of 3D strain and damage at a distance of 1-mm ahead of a notch root of a thin Compact Tension-like specimen, it is found that parallel crossing slant strained bands are active from the beginning of loading in a region where the crack will be slanted. These bands have an intermittent activity but are stable in space. Even at late stages of deformation strained bands can stop their activity highlighting the importance of plasticity on the failure process rather than damage softening. One void is followed over the loading history and seen to grow and orient along the slant strained band at very late stages of deformation. Void growth and strain are quantified. Gurson-Tvergaard-Needleman-type simulations using damage nucleation for shear, which is based on the Lode parameter, are performed and capture slant fracture but not the initial strain fields and in particular the experimentally found slant bands. The band formation and strain distribution inside and outside the bands are discussed further using plane strain simulations accounting for plastic material heterogeneity in soft zones

    Slant strained band development during flat to slant crack transition in AA 2198 T8 sheet: in situ 3D measurements

    No full text
    International audienceIn this work 3D strain and damage analyses are performed in the immediate vicinity of the notch root of a at CT-like specimen made of aluminum alloy. Experimental data, partially exploited by Morgeneyer et al (2014b), were obtained by using synchrotron laminography and the 3D reconstructed volumes are subsequently analyzed via Digital Volume Correlation. These data enable for in situ assessments of strain elds and ductile damage in the zone where the stress triaxiality evolves from elevated to lower levels, which is accompanied by at-to-slant crack transition. The measured strain eld patterns in this area are analyzed herein in a systematic manner by studying the incremental strain activity during several loading steps. It is shown that from the very beginning of the loading history multiple slant strained bands appear in front of the notch root while the corresponding damage growth sets in at later loading stages and higher strains. The activity of the dierent strained bands at the notch root is alternating between dierent locations over the loading history. However, the band leading to nal rupture is always active. The region where slant fracture occurs is identied to be in plane strain condition with respect to the crack propagation direction

    In Situ Observation of Strained Bands and Ductile Damage in Thin AA2139-T3 Alloy Sheets

    Get PDF
    The interactions between plasticity and damage mechanisms are not clearly established concerning the fracture of ductile sheet materials (e.g., flat to slant transition). The question addressed herein is to elucidate which mechanism is responsible for localized phenomena leading to the final failure. A mechanical test carried out on a notched plate made of 2139-T3 aluminum alloy is imaged thanks to synchrotron laminography at micrometer resolution. Ductile damage (i.e., void nucleation, growth and coalescence) is analyzed via reconstructed volumes. Although the low volume fraction of secondary phases in the tested alloy is challenging, digital volume correlation is also utilized to measure displacement fields and estimate strain fields in the bulk of the alloy during the whole test. In the first part of this study, the resolution of the measurement technique is assessed under such conditions. Then strained bands are shown to occur very early on in what will be the slant region of the fracture path. Conversely, damage grows at very late loading steps

    Hierarchically guided in situ nanolaminography for the visualisation of damage nucleation in alloy sheets

    Get PDF
    Hierarchical guidance is developed for three-dimensional (3D) nanoscale X-ray imaging, enabling identification, refinement, and tracking of regions of interest (ROIs) within specimens considerably exceeding the field of view. This opens up new possibilities for in situ investigations. Experimentally, the approach takes advantage of rapid multiscale measurements based on magnified projection microscopy featuring continuous zoom capabilities. Immediate and continuous feedback on the subsequent experimental progress is enabled by suitable on-the-fly data processing. For this, by theoretical justification and experimental validation, so-called quasi-particle phase-retrieval is generalised to conical-beam conditions, being key for sufficiently fast computation without significant loss of imaging quality and resolution compared to common approaches for holographic microscopy. Exploiting 3D laminography, particularly suited for imaging of ROIs in laterally extended plate-like samples, the potential of hierarchical guidance is demonstrated by the in situ investigation of damage nucleation inside alloy sheets under engineering-relevant boundary conditions, providing novel insight into the nanoscale morphological development of void and particle clusters under mechanical load. Combined with digital volume correlation, we study deformation kinematics with unprecedented spatial resolution. Correlation of mesoscale (i.e. strain fields) and nanoscale (i.e. particle cracking) evolution opens new routes for the understanding of damage nucleation within sheet materials with application-relevant dimensions

    Understanding, observation and quantification of ductile failure mechanisms via 3D imaging

    No full text
    Au cours des dernières décennies, des efforts importants ont été menés dans la modélisation des processus de rupture ductile entraînant des progrès substantiels. Cependant, la compréhension complète des mécanismes de rupture ductile dans des états de contraintes spécifiques demeure une question ouverte. Ceci est dû au manque de bases des données expérimentales et à la non validation des modèles pour ces conditions de chargement. Dans ce travail, les acquisitions de données sont principalement obtenues en utilisant la laminographie, ce qui rend possible l'imagerie de régions d'intérêt d'échantillons plats. L'utilisation d'éprouvettes larges (et minces) permet de générer différents états de contraintes et des conditions aux limites pertinentes pour l'ingénierie, qui ne pouvaient pas être évaluées jusqu'à présent en trois dimensions et en essais in-situ à des échelles micrométriques. La corrélation d'images volumiques (DVC) est utilisée pour mesurer les champs de déplacement à l'intérieur des échantillons en acquérant des images de laminographie 3D. Deux classes de matériaux représentatives de deux modes génériques de rupture ductile ont été examinées, à savoir les alliages d'aluminium (rupture par instabilité) et la fonte à graphite sphéroïdal (rupture par croissance de vide et coalescence).L'observation de la microstructure et les interactions déformations-endommagement pour différentes géométries d'échantillons et pour différents niveaux de triaxialité des contraintes associés ont été étudiées pour des alliages d'aluminium à une résolution micrométrique. De plus, un cadre combiné numérique-expérimental (DVC-FE) est introduit pour valider les simulations numériques à l'échelle microscopique pour la fonte à graphite sphéroïdal. Les simulations par éléments finis (FE), qui représentent la microstructure des matériaux étudiés, sont conduites avec des conditions aux limites de Dirichlet extraites des mesures DVC. Enfin, le cadre DVC-FE a été amélioré et utilisé comme une procédure d'identification intégrée pour l'étude du comportement élasto-plastique de la matrice ferritique de la fonte, non seulement en termes de champs cinématiques induits par la microstructure aléatoire, mais aussi avec les niveaux de charge globaux.In the last few decades significant efforts have been made in modeling ductile failure processes resulting in substantial progress. However, the full understanding of ductile failure mechanisms under specific stress states still remains an open question. This is partly due to missing experimental data and validation of models for such loading conditions.In this work, data acquisitions are mainly obtained by using laminography, which makes the imaging of regions of interest in flat samples possible. The use of large (and thin) specimens allows various stress states and engineering-relevant boundary conditions to be generated, which could not be assessed in three dimensions and in-situ at micrometer scales before. Digital Volume Correlation (DVC) is used for measuring displacement fields in the bulk of samples by registering 3D laminography images. Two material classes that are representative of two generic modes of ductile failure have been examined, namely, Al-alloys (failure by instability) and cast iron (failure by void growth and coalescence). The observation of microstructure and strain-damage interactions at micrometer resolution for various specimen geometries and associated levels of stress triaxiality are studied for Al-alloys. Additionally, a combined computational-experimental (DVC-FE) framework is introduced to validate numerical simulations at the microscopic scale for nodular graphite cast iron. Finite Element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements.Last, the DVC-FE framework is upgraded to an integrated identification procedure to probe elasto-plastic constitutive law of the cast iron ferritic matrix not only in terms of kinematic fields induced by the random microstructure but also by overall load levels

    Compréhension, observation et quantification des mécanismes de rupture ductile par imagerie 3D

    No full text
    In the last few decades significant efforts have been made in modeling ductile failure processes resulting in substantial progress. However, the full understanding of ductile failure mechanisms under specific stress states still remains an open question. This is partly due to missing experimental data and validation of models for such loading conditions.In this work, data acquisitions are mainly obtained by using laminography, which makes the imaging of regions of interest in flat samples possible. The use of large (and thin) specimens allows various stress states and engineering-relevant boundary conditions to be generated, which could not be assessed in three dimensions and in-situ at micrometer scales before. Digital Volume Correlation (DVC) is used for measuring displacement fields in the bulk of samples by registering 3D laminography images. Two material classes that are representative of two generic modes of ductile failure have been examined, namely, Al-alloys (failure by instability) and cast iron (failure by void growth and coalescence). The observation of microstructure and strain-damage interactions at micrometer resolution for various specimen geometries and associated levels of stress triaxiality are studied for Al-alloys. Additionally, a combined computational-experimental (DVC-FE) framework is introduced to validate numerical simulations at the microscopic scale for nodular graphite cast iron. Finite Element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements.Last, the DVC-FE framework is upgraded to an integrated identification procedure to probe elasto-plastic constitutive law of the cast iron ferritic matrix not only in terms of kinematic fields induced by the random microstructure but also by overall load levels.Au cours des dernières décennies, des efforts importants ont été menés dans la modélisation des processus de rupture ductile entraînant des progrès substantiels. Cependant, la compréhension complète des mécanismes de rupture ductile dans des états de contraintes spécifiques demeure une question ouverte. Ceci est dû au manque de bases des données expérimentales et à la non validation des modèles pour ces conditions de chargement. Dans ce travail, les acquisitions de données sont principalement obtenues en utilisant la laminographie, ce qui rend possible l'imagerie de régions d'intérêt d'échantillons plats. L'utilisation d'éprouvettes larges (et minces) permet de générer différents états de contraintes et des conditions aux limites pertinentes pour l'ingénierie, qui ne pouvaient pas être évaluées jusqu'à présent en trois dimensions et en essais in-situ à des échelles micrométriques. La corrélation d'images volumiques (DVC) est utilisée pour mesurer les champs de déplacement à l'intérieur des échantillons en acquérant des images de laminographie 3D. Deux classes de matériaux représentatives de deux modes génériques de rupture ductile ont été examinées, à savoir les alliages d'aluminium (rupture par instabilité) et la fonte à graphite sphéroïdal (rupture par croissance de vide et coalescence).L'observation de la microstructure et les interactions déformations-endommagement pour différentes géométries d'échantillons et pour différents niveaux de triaxialité des contraintes associés ont été étudiées pour des alliages d'aluminium à une résolution micrométrique. De plus, un cadre combiné numérique-expérimental (DVC-FE) est introduit pour valider les simulations numériques à l'échelle microscopique pour la fonte à graphite sphéroïdal. Les simulations par éléments finis (FE), qui représentent la microstructure des matériaux étudiés, sont conduites avec des conditions aux limites de Dirichlet extraites des mesures DVC. Enfin, le cadre DVC-FE a été amélioré et utilisé comme une procédure d'identification intégrée pour l'étude du comportement élasto-plastique de la matrice ferritique de la fonte, non seulement en termes de champs cinématiques induits par la microstructure aléatoire, mais aussi avec les niveaux de charge globaux
    corecore