1,004 research outputs found

    Scenarios for optimizing potato productivity in a lunar CELSS

    Get PDF
    The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor

    Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    Get PDF
    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development

    Potential of derived lunar volatiles for life support

    Get PDF
    The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs (10,000dollarsperkilogram)andregolithminingcosts(10,000 dollars per kilogram) and regolith mining costs (5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base

    Capillary Movement in Substrates in Microgravity

    Get PDF
    A more complete understanding of the dynamics of capillary flow through an unsaturated porous medium would be useful for a number of space and terrestrial applications. Knowledge of capillary migration of liquids in granular beds in microgravity would significantly enhance the development and understanding of how a matrix based nutrient delivery system for the growth of plants would function in a microgravity environment. Thus, such information is of interest from the theoretical as well as practical point of view

    The Astroculture (tm)-1 experiment on the USML-1 mission

    Get PDF
    Permanent human presence in space will require a life support system that minimizes athe need for resupply of consumables from Earth resources. Plants that convert radiant energy to chemical energy via photosynthesis are a key component of a bioregenerative life support system. Providing the proper root environment for plants in reduced gravity is an essential aspect of the development of facilities for growing plants in a space environment. The ASTROCULTURE(TM)-1 experiment, included in the USML-1 mission, successfully demonstrated the ability of the Wisconsin Center for Space Automation and Robotics porous tube water delivery system to control water movement through a rooting matrix in a microgravity environment

    A New Approach to Canonical Quantization of the Radiation Damping

    Full text link
    Inspired in some works about quantization of dissipative systems, in particular of the damped harmonic oscillator\cite{MB,RB,12}, we consider the dissipative system of a charge interacting with its own radiation, which originates the radiation damping (RD). Using the indirect Lagrangian representation we obtained a Lagrangian formalism with a Chern-Simons-like term. A Hamiltonian analysis is also done, what leads to the quantization of the system.Comment: 5 page

    Light emitting diodes as a plant lighting source

    Get PDF
    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements

    Temporal changes in importance of quality of life domains: a longitudinal study in community-dwelling Swiss older people.

    Get PDF
    Population aging is a global phenomenon requiring interventions to improve quality of life (QoL), a subjective and dynamic concept. Such interventions should be based on QoL domains considered as important from older people's viewpoint. It is unclear whether and how much these domains may vary over time as people age. This study aims to assess the importance of QoL domains, their pattern and determinants of change among the non-institutionalized older population over a 5-year period. This longitudinal study included community-dwelling older adults (N = 1947, aged 68-77 years at baseline) from the Lausanne cohort 65+. In 2011 and 2016, participants rated the importance of 28 QoL items in seven domains. The difference between scores (0-100) of importance attributed to each QoL domain between two assessments was calculated and used as a dependent variable to assess the associations with covariates in multivariable analysis for each domain. Importance scores slightly but significantly decreased in five of the seven QoL domains. Despite the majority of participants did not modify their ranking of importance for each QoL domain between the two time points, the proportion of change was still substantial. Bivariate and multivariable analyses showed that education and to a lesser extent age, living arrangement and morbidity, were associated with decrease in the importance of specific QoL domains; characteristics indicating vulnerability (e.g., low education or morbidity) were associated with a decline in the importance. Although aging individuals modified the importance they give to the seven QoL domains, at population level, changes in opposite directions overall resulted in only small decline; importance seems less stable over time among individuals with vulnerable sociodemographic and health profiles

    Continuous and semicontinuous reaction systems for high-solids enzymatic hydrolysis of lignocellulosics

    Get PDF
    An attractive operation strategy for the enzymatic hydrolysis of lignocellulosics results from dividing the process into three stages with complementary goals: continuous enzyme adsorption at low-solids loading (5% w/w) with recycling of the liquid phase; continuous liquefaction at high-solids content (up to 20% w/w); and, finally, continuous or semicontinuous hydrolysis with supplementation of fresh enzymes. This paper presents a detailed modeling and simulation framework for the aforementioned operation strategies. The limiting micromixing situations of macrofluid and microfluid are used to predict conversions. The adsorption and liquefaction stages are modeled as a continuous stirred tank and a plug flow reactor, respectively. Two alternatives for the third stage are studied: a train of five cascading stirred tanks and a battery of batch reactors in parallel. Simulation results show that glucose concentrations greater than 100 g L-1 could be reached with both of the alternatives for the third stage324805819sem informaçãosem informaçã
    corecore