27 research outputs found

    Ruling out Color Transparency in Quasielastic 12^{12}C(e,e'p) up to Q2Q^2 of 14.2 (GeV/c)2^2

    No full text
    International audienceQuasielastic C12(e,e′p) scattering was measured at spacelike 4-momentum transfer squared Q2=8, 9.4, 11.4, and 14.2  (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5  GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e,e′p) reactions. These results impose strict constraints on models of color transparency for protons

    First Measurement of the EMC Effect in 10^{10}B and 11^{11}B

    No full text
    International audienceThe nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in 10^{10}B and 11^{11}B. Previous measurements of the EMC effect in A12A \leq 12 nuclei showed an unexpected nuclear dependence; 10^{10}B and 11^{11}B were measured to explore the EMC effect in this region in more detail. Results are presented for 9^9Be, 10^{10}B, 11^{11}B, and 12^{12}C at an incident beam energy of 10.6~GeV. The EMC effect in the boron isotopes was found to be similar to that for 9^9Be and 12^{12}C, yielding almost no nuclear dependence in the EMC effect in the range A=412A=4-12. This represents important, new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei

    Constraints on the onset of color transparency from quasi-elastic 12^{12}C(e,ep)(e,e'p) up to Q2=14.2Q^2=\,14.2\,(GeV/c)2/c)^2

    No full text
    International audienceQuasi-elastic scattering on 12^{12}C(e,ep)(e,e'p) was measured in Hall C at Jefferson Lab for space-like 4-momentum transfer squared Q2Q^2 in the range of 8--14.2 (GeV/cc)2^2 with proton momenta up to 8.3 GeV/cc. The experiment was carried out in the upgraded Hall C at Jefferson Lab. It used the existing high momentum spectrometer and the new super high momentum spectrometer to detect the scattered electrons and protons in coincidence. The nuclear transparency was extracted as the ratio of the measured yield to the yield calculated in the plane wave impulse approximation. Additionally, the transparency of the 1s1/21s_{1/2} and 1p3/21p_{3/2} shell protons in 12^{12}C was extracted, and the asymmetry of the missing momentum distribution was examined for hints of the quantum chromodynamics prediction of Color Transparency. All of these results were found to be consistent with traditional nuclear physics and inconsistent with the onset of Color Transparency

    First Measurement of the EMC effect in <math><mmultiscripts><mi mathvariant="normal">B</mi><mprescripts/><none/><mn>10</mn></mmultiscripts></math> and <math><mmultiscripts><mi mathvariant="normal">B</mi><mprescripts/><none/><mn>11</mn></mmultiscripts></math>

    No full text
    International audienceThe nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in B10 and B11. Previous measurements of the EMC effect in A≤12 nuclei showed an unexpected nuclear dependence; B10 and B11 were measured to explore the EMC effect in this region in more detail. Results are presented for Be9, B10, B11, and C12 at an incident beam energy of 10.6 GeV. The EMC effect in the boron isotopes was found to be similar to that for Be9 and C12, yielding almost no nuclear dependence in the EMC effect in the range A=4–12. This represents important new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei

    Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider

    No full text
    We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented

    Evaluation of longitudinal double-spin asymmetry measurements in semi-inclusive deep-inelastic scattering from the proton for the ECCE detector design

    No full text
    The evaluation of the measurement of double-spin asymmetries for charge-separated pions and kaons produced in deep-inelastic scattering from the proton using the ECCE detector design concept is presented, for the combinations of lepton and hadron beam energies of 5 × 41 GeV2 and 18 × 275 GeV2. The study uses unpolarised simulated data that are processed through a full GEANT simulation of the detector. These data are then reweighted at the parton level with DSSV helicity distributions and DSS fragmentation functions, in order to generate the relevant asymmetries, and subsequently analysed. The performed analysis shows that the ECCE detector concept provides the resolution and acceptance, with a broad coverage in kinematic phase space, needed for a robust extraction of asymmetries. This, in turn, allows for a precise extraction of sea-quark helicity distributions

    Design of the ECCE detector for the Electron Ion Collider

    Get PDF
    The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector

    Scientific Computing Plan for the ECCE Detector at the Electron Ion Collider

    No full text
    The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing these challenges in the process of producing a complete detector proposal based upon detailed detector and physics simulations. In this document, the software and computing efforts to produce this proposal are discussed; furthermore, the computing and software model and resources required for the future of ECCE are described

    Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept

    No full text
    This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector

    Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept

    No full text
    This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector
    corecore