19 research outputs found

    Influenza and associated co-infections in critically ill immunosuppressed patients

    Get PDF
    Background: It is unclear whether influenza infection and associated co-infection are associated with patient-important outcomes in critically ill immunocompromised patients with acute respiratory failure. Methods: Preplanned secondary analysis of EFRAIM, a prospective cohort study of 68 hospitals in 16 countries. We included 1611 patients aged 18 years or older with non-AIDS-related immunocompromise, who were admitted to the ICU with acute hypoxemic respiratory failure. The main exposure of interest was influenza infection status. The primary outcome of interest was all-cause hospital mortality, and secondary outcomes ICU length of stay (LOS) and 90-day mortality. Results: Influenza infection status was categorized into four groups: patients with influenza alone (n = 95, 5.8%), patients with influenza plus pulmonary co-infection (n = 58, 3.6%), patients with non-influenza pulmonary infection (n = 820, 50.9%), and patients without pulmonary infection (n = 638, 39.6%). Influenza infection status was associated with a requirement for intubation and with LOS in ICU (P < 0.001). Patients with influenza plus co-infection had the highest rates of intubation and longest ICU LOS. On crude analysis, influenza infection status was associated with ICU mortality (P < 0.001) but not hospital mortality (P = 0.09). Patients with influenza plus co-infection and patients with non-influenza infection alone had similar ICU mortality (41% and 37% respectively) that was higher than patients with influenza alone or those without infection (33% and 26% respectively). A propensity score-matched analysis did not show a difference in hospital mortality attributable to influenza infection (OR = 1.01, 95%CI 0.90-1.13, P = 0.85). Age, severity scores, ARDS, and performance status were all associated with ICU, hospital, and 90-day mortality. Conclusions: Category of infectious etiology of respiratory failure (influenza, non-influenza, influenza plus co-infection, and non-infectious) was associated with ICU but not hospital mortality. In a propensity score-matched analysis, influenza infection was not associated with the primary outcome of hospital mortality. Overall, influenza infection alone may not be an independent risk factor for hospital mortality in immunosuppressed patients

    Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy

    No full text
    Objective: We wished to explore the use, diagnostic capability and outcomes of bronchoscopy added to noninvasive testing in immunocompromised patients. In this setting, an inability to identify the cause of acute hypoxaemic respiratory failure is associated with worse outcome. Every effort should be made to obtain a diagnosis, either with noninvasive testing alone or combined with bronchoscopy. However, our understanding of the risks and benefits of bronchoscopy remains uncertain. Patients and methods: This was a pre-planned secondary analysis of Efraim, a prospective, multinational, observational study of 1611 immunocompromised patients with acute respiratory failure admitted to the intensive care unit (ICU). We compared patients with noninvasive testing only to those who had also received bronchoscopy by bivariate analysis and after propensity score matching. Results: Bronchoscopy was performed in 618 (39%) patients who were more likely to have haematological malignancy and a higher severity of illness score. Bronchoscopy alone achieved a diagnosis in 165 patients (27% adjusted diagnostic yield). Bronchoscopy resulted in a management change in 236 patients (38% therapeutic yield). Bronchoscopy was associated with worsening of respiratory status in 69 (11%) patients. Bronchoscopy was associated with higher ICU (40% versus 28%; p<0.0001) and hospital mortality (49% versus 41%; p=0.003). The overall rate of undiagnosed causes was 13%. After propensity score matching, bronchoscopy remained associated with increased risk of hospital mortality (OR 1.41, 95% CI 1.08–1.81). Conclusions: Bronchoscopy was associated with improved diagnosis and changes in management, but also increased hospital mortality. Balancing risk and benefit in individualised cases should be investigated further

    Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy

    No full text
    Objective: We wished to explore the use, diagnostic capability and outcomes of bronchoscopy added to noninvasive testing in immunocompromised patients. In this setting, an inability to identify the cause of acute hypoxaemic respiratory failure is associated with worse outcome. Every effort should be made to obtain a diagnosis, either with noninvasive testing alone or combined with bronchoscopy. However, our understanding of the risks and benefits of bronchoscopy remains uncertain.Patients and methods: This was a pre-planned secondary analysis of Efraim, a prospective, multinational, observational study of 1611 immunocompromised patients with acute respiratory failure admitted to the intensive care unit (ICU). We compared patients with noninvasive testing only to those who had also received bronchoscopy by bivariate analysis and after propensity score matching.Results: Bronchoscopy was performed in 618 (39%) patients who were more likely to have haematological malignancy and a higher severity of illness score. Bronchoscopy alone achieved a diagnosis in 165 patients (27% adjusted diagnostic yield). Bronchoscopy resulted in a management change in 236 patients (38% therapeutic yield). Bronchoscopy was associated with worsening of respiratory status in 69 (11%) patients. Bronchoscopy was associated with higher ICU (40% versus 28%; p< 0.0001) and hospital mortality (49% versus 41%; p=0.003). The overall rate of undiagnosed causes was 13%. After propensity score matching, bronchoscopy remained associated with increased risk of hospital mortality (OR 1.41, 95% CI 1.08-1.81).Conclusions: Bronchoscopy was associated with improved diagnosis and changes in management, but also increased hospital mortality. Balancing risk and benefit in individualised cases should be investigated further

    Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study.

    No full text
    BACKGROUND: In immunocompromised patients with acute hypoxemic respiratory failure (ARF), initial management aims primarily to avoid invasive mechanical ventilation (IMV). METHODS: To assess the impact of initial management on IMV and mortality rates, we performed a multinational observational prospective cohort study in 16 countries (68 centers). RESULTS: A total of 1611 patients were enrolled (hematological malignancies 51.9%, solid tumors 35.2%, systemic diseases 17.3%, and solid organ transplantation 8.8%). The main ARF etiologies were bacterial (29.5%), viral (15.4%), and fungal infections (14.7%), or undetermined (13.2%). On admission, 915 (56.8%) patients were not intubated. They received standard oxygen (N = 496, 53.9%), high-flow oxygen (HFNC, N = 187, 20.3%), noninvasive ventilation (NIV, N = 153, 17.2%), and NIV + HFNC (N = 79, 8.6%). Factors associated with IMV included age (hazard ratio = 0.92/year, 95% CI 0.86-0.99), day-1 SOFA (1.09/point, 1.06-1.13), day-1 PaO2/FiO2 (1.47, 1.05-2.07), ARF etiology (Pneumocystis jirovecii pneumonia (2.11, 1.42-3.14), invasive pulmonary aspergillosis (1.85, 1.21-2.85), and undetermined cause (1.46, 1.09-1.98). After propensity score matching, HFNC, but not NIV, had an effect on IMV rate (HR = 0.77, 95% CI 0.59-1.00, p = 0.05). ICU, hospital, and day-90 mortality rates were 32.4, 44.1, and 56.4%, respectively. Factors independently associated with hospital mortality included age (odds ratio = 1.18/year, 1.09-1.27), direct admission to the ICU (0.69, 0.54-0.87), day-1 SOFA excluding respiratory score (1.12/point, 1.08-1.16), PaO2/FiO2 < 100 (1.60, 1.03-2.48), and undetermined ARF etiology (1.43, 1.04-1.97). Initial oxygenation strategy did not affect mortality; however, IMV was associated with mortality, the odds ratio depending on IMV conditions: NIV + HFNC failure (2.31, 1.09-4.91), first-line IMV (2.55, 1.94-3.29), NIV failure (3.65, 2.05-6.53), standard oxygen failure (4.16, 2.91-5.93), and HFNC failure (5.54, 3.27-9.38). CONCLUSION: HFNC has an effect on intubation but not on mortality rates. Failure to identify ARF etiology is associated with higher rates of both intubation and mortality. This suggests that in addition to selecting the appropriate oxygenation device, clinicians should strive to identify the etiology of ARF
    corecore