16 research outputs found

    Performance of Serology Assays for Diagnosing Celiac Disease in a Clinical Setting▿

    No full text
    Diagnosis of celiac disease frequently depends upon serology assays. We set out to prospectively assess the diagnostic value of five serology tests: an enzyme-linked immunosorbent assay (ELISA) for tissue transglutaminase (tTG)-immunoglobulin A (IgA) and tTG-IgG, a chemiluminescence assay for tTG-IgA, an ELISA for deamidated gliadin peptide (DGP) IgG and IgA screening, and detection of endomysial antibodies (Abs) by indirect immunofluorescence. One hundred sixteen children at high risk for developing celiac disease were evaluated clinically and underwent small bowel biopsies and blood serology tests. We examined differences between younger and older children in terms of clinical presentation, test performance, and the ability of high Ab levels to correctly predict diagnosis of celiac disease. Celiac disease was diagnosed for 85 (73%) children. No significant clinical differences were observed between the biopsy-positive and biopsy-negative groups. Children ≤3 years of age revealed higher concentrations of tTG-IgA and DGP Abs than children >3 years old (P = 0.017 and 0.007, respectively). High Ab concentrations were predictive of villous atrophies, with sensitivities ranging from 92.8% to 97.9%, depending on the assay and the cutoff points applied. Sensitivities, specificities, positive predictive values, and negative predictive values varied among assays and improved after correction for best cutoff points. Assay specificities obtained in the clinical setting were lower than expected. The new tTG-IgA chemiluminescence assay demonstrated high throughput but low specificity (74.2%). The tTG-IgA ELISA exhibited the highest test efficiency, and the tTG-IgA chemiluminescence assay was suitable for large-scale screening, with reduced specificity. High concentrations of celiac disease-specific Abs bring into question the need for performance of biopsies on children at high risk

    Etiology and long-term outcome of extrahepatic portal vein obstruction in children

    No full text
    AIM: To study the management and outcome of children with extrahepatic portal vein obstruction (EHPVO) in a whole country population

    Bitterness of Glucose/Galactose: Novel Mutations in the SLC5A1 Gene

    No full text
    Glucose galactose malabsorption (GGM) is a rare autosomal recessive disorder characterized by life-threatening osmotic diarrhea at infancy. When the intake of the offending sugars (namely, glucose, galactose and lactose) is ceased, the diarrhea promptly stops. Mutations in the SLC5A1 gene, encoding the sodium-glucose co-transporter located in the brush border of enterocytes, have been shown to cause the disease. More than 300 subjects of diverse origin have been reported worldwide, most of whom are a result of a consanguineous union. We examined 6 patients from 4 families presenting with complaints consistent with GGM and responsive to the appropriate fructose-based diet. Genomic DNA of the patients was polymerase chain reaction amplified for each of the 15 exons of the SLC5A1 gene and analyzed by nucleotide sequencing. The analysis lead to the identification of 2 novel mutations: a 1915 del C mutation, a frameshift mutation leading to a premature stop at codon 645; and a substitution missense mutation of T to C on nucleotide 947 (exon 9) causing a L316P substitution. In addition, G426R and C255W mutations previously described were identified; in both cases, the patients were shown to be homozygous and their parents heterozygous for the mutation. Of note, additional patients who underwent a similar evaluation at our center for suspected GGM did not show mutations in the SLC5A1 gene. Because the latter did not previously undergo a diagnostic algorithm in full, for instance, one that may consist of a glucose breath hydrogen test and an empiric attempt of a dietary switch to galactomin, we suggest that molecular genotyping of such patients should only follow such appropriate clinical evaluation

    Interleukin-1α deficiency reduces adiposity, glucose intolerance and hepatic de-novo lipogenesis in diet-induced obese mice

    No full text
    Objective While extensive research revealed that interleukin (IL)-1β contributes to insulin resistance (IR) development, the role of IL-1α in obesity and IR was scarcely studied. Using control, whole body IL-1α knockout (KO) or myeloid-cell-specific IL-1α-deficient mice, we tested the hypothesis that IL-1α deficiency would protect against high-fat diet (HFD)-induced obesity and its metabolic consequences. Research design and methods To induce obesity and IR, control and IL-1α KO mice were given either chow or HFD for 16 weeks. Glucose tolerance test was performed at 10 and 15 weeks, representing early and progressive stages of glucose intolerance, respectively. Liver and epididymal white adipose tissue (eWAT) samples were analyzed for general morphology and adipocyte size. Plasma levels of adiponectin, insulin, total cholesterol and triglyceride (TG), lipoprotein profile as well as hepatic lipids were analyzed. Expression of lipid and inflammation-related genes in liver and eWAT was analyzed. Primary mouse hepatocytes isolated from control mice were treated either with dimethyl sulfoxide (DMSO) (control) or 20 ng/mL recombinant IL-1α for 24 hours and subjected to gene expression analysis. Results Although total body weight gain was similar, IL-1α KO mice showed reduced adiposity and were completely protected from HFD-induced glucose intolerance. In addition, plasma total cholesterol and TG levels were lower and HFD-induced accumulation of liver TGs was completely inhibited in IL-1α KO compared with control mice. Expression of stearoyl-CoA desaturase1 (SCD1), fatty acid synthase (FASN), elongation of long-chain fatty acids family member 6 (ELOVL6), acetyl-CoA carboxylase (ACC), key enzymes that promote de-novo lipogenesis, was lower in livers of IL-1α KO mice. Treatment with recombinant IL-1α elevated the expression of ELOVL6 and FASN in mouse primary hepatocytes. Finally, mice with myeloid-cell-specific deletion of IL-1α did not show reduced adiposity and improved glucose tolerance. Conclusions We demonstrate a novel role of IL-1α in promoting adiposity, obesity-induced glucose intolerance and liver TG accumulation and suggest that IL-1α blockade could be used for treatment of obesity and its metabolic consequences.</p
    corecore