83 research outputs found

    Reconciling specific and unspecific risk factors: the interplay between theory and data

    Get PDF
    Contains fulltext : 89487.pdf (publisher's version ) (Closed access)1 juni 201

    Transport spectroscopy of an impurity spin in a carbon nanotube double quantum dot.

    Get PDF
    We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the interplay between spin-orbit interaction and a single impurity spin coupled to the double dot. The detection and tunability of this coupling are important for quantum manipulation in carbon nanotubes

    Tunable Kondo physics in a carbon nanotube double quantum dot.

    Get PDF
    We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device

    Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays

    Get PDF
    We investigate mesoscopic Josephson junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/TcT/T_c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership (RG61493).This is the accepted manuscript. The final version is available at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.245418

    Measuring the complex admittance of a carbon nanotube double quantum dot.

    Get PDF
    We investigate radio-frequency (rf) reflectometry in a tunable carbon nanotube double quantum dot coupled to a resonant circuit. By measuring the in-phase and quadrature components of the reflected rf signal, we are able to determine the complex admittance of the double quantum dot as a function of the energies of the single-electron states. The measurements are found to be in good agreement with a theoretical model of the device in the incoherent limit. In addition to being of fundamental interest, our results present an important step forward towards noninvasive charge and spin state readout in carbon nanotube quantum dots

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Electric Field Control of Spin Transport

    Full text link
    Spintronics is an approach to electronics in which the spin of the electrons is exploited to control the electric resistance R of devices. One basic building block is the spin-valve, which is formed if two ferromagnetic electrodes are separated by a thin tunneling barrier. In such devices, R depends on the orientation of the magnetisation of the electrodes. It is usually larger in the antiparallel than in the parallel configuration. The relative difference of R, the so-called magneto-resistance (MR), is then positive. Common devices, such as the giant magneto-resistance sensor used in reading heads of hard disks, are based on this phenomenon. The MR may become anomalous (negative), if the transmission probability of electrons through the device is spin or energy dependent. This offers a route to the realisation of gate-tunable MR devices, because transmission probabilities can readily be tuned in many devices with an electrical gate signal. Such devices have, however, been elusive so far. We report here on a pronounced gate-field controlled MR in devices made from carbon nanotubes with ferromagnetic contacts. Both the amplitude and the sign of the MR are tunable with the gate voltage in a predictable manner. We emphasise that this spin-field effect is not restricted to carbon nanotubes but constitutes a generic effect which can in principle be exploited in all resonant tunneling devices.Comment: 22 pages, 5 figure

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Radio-frequency capacitance spectroscopy of metallic nanoparticles

    Get PDF
    Recent years have seen great progress in our understanding of the electronic properties of nanomaterials in which at least one dimension measures less than 100 nm. However, contacting true nanometer scale materials such as individual molecules or nanoparticles remains a challenge as even state-of-the-art nanofabrication techniques such as electron-beam lithography have a resolution of a few nm at best. Here we present a fabrication and measurement technique that allows high sensitivity and high bandwidth readout of discrete quantum states of metallic nanoparticles which does not require nm resolution or precision. This is achieved by coupling the nanoparticles to resonant electrical circuits and measurement of the phase of a reflected radio-frequency signal. This requires only a single tunnel contact to the nanoparticles thus simplifying device fabrication and improving yield and reliability. The technique is demonstrated by measurements on 2.7 nm thiol coated gold nanoparticles which are shown to be in excellent quantitative agreement with theory

    Spectroscopic analysis of finite size effects around a Kondo quantum dot

    Full text link
    We consider a simple setup in which a small quantum dot is strongly connected to a finite size box. This box can be either a metallic box or a finite size quantum wire.The formation of the Kondo screening cloud in the box strongly depends on the ratio between the Kondo temperature and the box level spacing. By weakly connecting two metallic reservoirs to the quantum dot, a detailed spectroscopic analysis can be performed. Since the transport channels and the screening channels are almost decoupled, such a setup allows an easier access to the measure of finite-size effects associated with the finite extension of the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200
    corecore