13 research outputs found

    Genome-wide identification of host-segregating SNPs for source attribution of clinical Campylobacter coli isolates

    Get PDF
    International audienceCampylobacter is among the most common causes of gastroenteritis worldwide. Campylobacter jejuni and Campylobacter coli are the most common species causing human-disease. DNA-sequence-based methods for strain characterization have focussed largely on C. jejuni, responsible for 80-90% of infections, meaning that C. coli epidemiology has lagged behind. Here we have analyzed the genome of 450 C. coli isolates to determine genetic markers that can discriminate isolates sampled from 3 major reservoir hosts (chickens, cattle and pigs). These markers were then applied to identify the source of infection of 147 C. coli from French clinical cases. Using STRUCTURE software, 259 potential host-segregating markers were revealed by probabilistic characterization of SNP frequency variation in strain collections from three different hosts. These SNPs were found in 41 genes or intergenic regions, mostly coding for proteins involved in motility and membrane functions. Source attribution of clinical isolates based on the differential presence of these markers confirmed chicken as the most common source of C. coli infection in France.IMPORTANCE Genome-wide and source attribution studies based on Campylobacter species have shown their importance for the understanding of foodborne infections. Although the use of MLST based on 7 genes from C. jejuni is a powerful method to structure populations, when applied to C. coli results have not clearly demonstrated their robustness. Therefore, we aim here to provide more accurate data based on the identification of single-nucleotide polymorphisms. Results from this study reveal an important number of host-segregating SNPs, found in proteins implied in motility, membrane functions or DNA repair systems. These findings offer new interesting opportunities for further study on C. coli adaptation to its environment. Additionally, the results demonstrate that poultry is potentially the main reservoir of C. coli in France

    Performance Evaluation of the Novodiag Bacterial GE+ Multiplex PCR Assay

    No full text
    International audienceThe bacteriological diagnosis of intestinal bacterial infections has historically been based on culture on agar plates. However, culture may lack sensitivity, and some enteropathogens, such as pathovars of Escherichia coli, may escape routine diagnosis. Our goal was to evaluate the analytical performance of the Novodiag Bacterial GE+ kit for the detection of enteropathogenic bacteria in acute community diarrhea. We included 251 stools in this study (198 retrospective and 53 prospective). The analytical performance was calculated using a composite reference standard (CRS) in the absence of a perfect gold standard (lack of sensitivity of culture). The CRS was defined as positive if culture was positive or, in case of a negative culture, if the BD Max extended enteric bacterial panel and/or other real-time PCR (RT-PCR) tests were positive. Of the 251 samples, 200 were positive, and 51 were negative. Overall sensitivities of the Novodiag Bacterial GE+ kit for Campylobacter sp., Salmonella sp., Shigella sp./enteroinvasive E. coli (EIEC), Yersinia enterocolitica, enterohemorrhagic E. coli (EHEC), and enterotoxigenic E. coli (ETEC) ranged from 98.98 to 100%, specificities ranged from 98.08 to 100%, positive predictive values (PPVs) ranged from 88.24 to 100%, and negative predictive values (NVPs) ranged from 99.36 to 100%. The analytical performance of the Novodiag Bacterial GE+ kit is excellent. It can be used as a routine tool in the rapid diagnosis of bacterial gastroenteritis. Despite the eNAT tube dilution of the primary sample, the detection of Salmonella sp. and EHEC was perfect. The kit has the advantage of only detecting pathogenic Y. enterocolitica Its performance for Campylobacter is very satisfactory

    The Cytolethal Distending Toxin Subunit CdtB of Helicobacter Induces a Th17-related and Antimicrobial Signature in Intestinal and Hepatic Cells In Vitro

    No full text
    International audienceEnterohepatic Helicobacter species are associated with several digestive diseases. Helicobacter pullorum is an emerging human foodborne pathogen, and Helicobacter hepaticus is a mouse pathogen; both species are associated with intestinal and/or hepatic diseases. They possess virulence factors, such as cytolethal distending toxin (CDT). Data indicate that CDT may be involved in chronic inflammatory responses, via its active subunit, CdtB. The proinflammatory properties of the CdtB of H. pullorum and H. hepaticus were assessed on human intestinal and hepatic epithelial cells in vitro. Interleukin 8 expression was evaluated by using wild-type strains and their corresponding CdtB isogenic mutants and by delivering CdtB directly into the cells. Nuclear factor κB nuclear translocation and transcriptomic characteristics in response to CdtB were also evaluated. The CdtB of these Helicobacter species induced nuclear factor κB nuclear translocation and exhibited proinflammatory properties, mainly the expression of T-helper type 17-related genes and genes encoding antimicrobial products also involved in cancer. The Histidine residue in position 265 of the CdtB catalytic site appeared to play a role in the regulation of most of these genes. As for flagellin or lipopolysaccharides, CdtB also induced expression of inflammation-associated genes related to antimicrobial activity

    Development of a Real-Time Fluorescence Resonance Energy Transfer PCR To Detect Arcobacter Species▿

    No full text
    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was done by probe hybridization and melting curve analysis, using fluorescence resonance energy transfer technology. Discrimination between Arcobacter species was straightforward, as the corresponding melting points showed significant differences with the characteristic melting temperatures of 63.5°C, 58.4°C, 60.6°C, and 51.8°C for the Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter cibarius, and Arcobacter nitrofigilis type strains, respectively. The specificity of this assay was confirmed with pure cultures of 106 Arcobacter isolates from human clinical and veterinary specimens identified by phenotypic methods and 16S rRNA gene sequencing. The assay was then used to screen 345 clinical stool samples obtained from patients with diarrhea. The assay detected A. butzleri in four of these clinical samples (1.2%). These results were confirmed by a conventional PCR method targeting the 16S rRNA gene with subsequent sequencing of the PCR product. In conclusion, this real-time assay detects and differentiates Arcobacter species in pure culture as well as in the competing microbiota of the stool matrix. The assay is economical since only one biprobe is used and multiple Arcobacter species are identified in a single test

    Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori

    Get PDF
    Helicobacter pylori is a major human pathogen. Diagnosis of H. pylori infection and determination of its antibiotic susceptibility still mainly rely on culture and phenotypic drug susceptibility testing (DST) that is time-consuming and laborious. Whole genome sequencing (WGS) has recently emerged in medical microbiology as a diagnostic tool for reliable drug resistance prediction in bacterial pathogens. The aim of this study was to compare phenotypic DST results with the predictions based on the presence of genetic determinants identified in the H. pylori genome using WGS. Phenotypic resistance to clarithromycin, metronidazole, tetracycline, levofloxacin, and rifampicin was determined in 140 clinical H. pylori isolates by E-Test®, and the occurrence of certain single nucleotide polymorphisms (SNPs) in target genes was determined by WGS. Overall, there was a high congruence of >99% between phenotypic DST results for clarithromycin, levofloxacin, and rifampicin and SNPs identified in the 23S rRNA, gyrA, and rpoB gene. However, it was not possible to infer a resistance phenotype for metronidazole based on the occurrence of distinct SNPs in frxA and rdxA. All 140 H. pylori isolates analysed in this study were susceptible to tetracycline, which was in accordance with the absence of double or triple nucleotide substitutions in the 16S rRNA gene

    The conditioning and extinction of fear in youths: What's sex got to do with it?

    No full text
    a b s t r a c t Adult work shows differences in emotional processing influenced by sexes of both the viewer and expresser of facial expressions. We investigated this in 120 healthy youths (57 boys; 10-17 years old) randomly assigned to fear conditioning and extinction tasks using either neutral male or female faces as the conditioned threat and safety cues, and a fearful face paired with a shrieking scream as the unconditioned stimulus. Fear ratings and skin conductance responses (SCRs) were assessed. Male faces triggered increased fear ratings in all participants during conditioning and extinction. Greater differential SCRs were observed in boys viewing male faces and in girls viewing female faces during conditioning. During extinction, differential SCR findings remained significant in boys viewing male faces. Our findings demonstrate how sex of participant and sex of target interact to shape fear responses in youths, and how the type of measure may lead to distinct profiles of fear responses

    The Nuclear Remodeling Induced by Helicobacter Cytolethal Distending Toxin Involves MAFB Oncoprotein

    No full text
    International audienceEnterohepatic Helicobacters, such as Helicobacter hepaticus and Helicobacter pullorum, are associated with several intestinal and hepatic diseases. Their main virulence factor is the cytolethal distending toxin (CDT). In the present study, whole genome microarray-based identification of differentially expressed genes was performed in vitro in HT-29 intestinal cells while following the ectopic expression of the active CdtB subunit of H. hepaticus CDT. A CdtB-dependent upregulation of the V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) gene encoding the MAFB oncoprotein was found, as well as the CdtB-dependent regulation of several MAFB target genes. The transduction and coculture experiments confirmed MAFB mRNA and protein induction in response to CDT and its CdtB subunit in intestinal and hepatic cell lines. An analysis of MAFB protein subcellular localization revealed a strong nuclear and perinuclear localization in the CdtB-distended nuclei in intestinal and hepatic cells. MAFB was also detected at the cell periphery of the CdtB-induced lamellipodia in some cells. The silencing of MAFB changed the cellular response to CDT with the formation of narrower lamellipodia, a reduction of the increase in nucleus size, and the formation of less γH2AX foci, the biomarker for DNA double-strand breaks. Taken together, these data show that the CDT of enterohepatic Helicobacters modulates the expression of the MAFB oncoprotein, which is translocated in the nucleus and is associated with the remodeling of the nuclei and actin cytoskeleton

    Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates: a Focus on Aminoglycoside Resistance Determinants

    Get PDF
    Free PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113490/A (WGS) approach was conducted in order to identify the molecular determinants associated with antimicrobial resistance in 12 multidrug-resistant Campylobacter jejuni and Campylobacter coli isolates, with a focus on aminoglycoside resistance determinants. Two variants of a new aminoglycoside phosphotransferase gene [aph(2″)-Ii1 and aph(2″)-Ii2 ] putatively associated with gentamicin resistance were found. In addition, the following new genes were identified for the first time in Campylobacter: a lincosamide nucleotidyltransferase gene [lnu(G)], likely associated with lincomycin resistance, and two resistance enzyme genes (spw and apmA) similar to those found in Staphylococcus aureus, which may confer spectinomycin and gentamicin resistance, respectively. A C1192T mutation of the 16S rRNA gene that may be involved in spectinomycin resistance was also found in a C. coli isolate. Genes identified in the present study were located either on the bacterial chromosome or on plasmids that could be transferred naturally. Their role in aminoglycoside resistance remains to be supported by genetic studies. Regarding the other antimicrobial agents studied, i.e., ampicillin, ciprofloxacin, erythromycin, and tetracycline, a perfect correlation between antimicrobial phenotypes and genotypes was found. Overall, our data suggest that WGS analysis is a powerful tool for identifying resistance determinants in Campylobacter and can disclose the full genetic elements associated with resistance, including antimicrobial compounds not tested routinely in antimicrobial susceptibility testing.This work was supported by internal funding of the Ricardo Jorge National Institute of Health. WGS was performed at the Unidade de Tecnologia e Inovação (Departamento de Genética Humana, Instituto Nacional de Saúde Ricardo Jorge, Lisbon, Portugal).info:eu-repo/semantics/publishedVersio

    The Cytolethal Distending Toxin Subunit CdtB of Helicobacter hepaticus Promotes Senescence and Endoreplication in Xenograft Mouse Models of Hepatic and Intestinal Cell Lines

    No full text
    International audienceCytolethal distending toxins (CDTs) are common among pathogenic bacteria of the human and animal microbiota. CDTs exert cytopathic effets, via their active CdtB subunit. No clear description of those cytopathic effects has been reported at the cellular level in the target organs in vivo. In the present study, xenograft mouse models of colon and liver cell lines were set up to study the effects of the CdtB subunit of Helicobacter hepaticus. Conditional transgenic cell lines were established, validated in vitro and then engrafted into immunodeficient mice. After successful engraftment, mice were treated with doxycyclin to induce the expression of transgenes (red fluorescent protein, CdtB, and mutated CdtB). For both engrafted cell lines, results revealed a delayed tumor growth and a reduced tumor weight in CdtB-expressing tumors compared to controls. CdtB-derived tumors showed γ-H2AX foci formation, an increase in apoptosis, senescence, p21 and Ki-67 nuclear antigen expression. No difference in proliferating cells undergoing mitosis (phospho-histone H3) was observed. CdtB intoxication was also associated with an overexpression of cytokeratins in cells at the invasive front of the tumor as well as an increase in ploidy. All these features are hallmarks of endoreplication, as well as aggressiveness in cancer. These effects were dependent on the histidine residue at position 265 of the CdtB, underlying the importance of this residue in CdtB catalytic activity. Taken together, these data indicate that the CdtB triggers senescence and cell endoreplication leading to giant polyploid cells in these xenograft mouse models

    Deletion of IQGAP1 promotes Helicobacter pylori -induced gastric dysplasia in mice and acquisition of cancer stem cell properties in vitro

    No full text
    International audienceHelicobacter pylori infection is responsible for gastric carcinogenesis but host factors are also implicated. IQGAP1, a scaffolding protein of the adherens junctions interacting with E-cadherin, regulates cellular plasticity and proliferation. In mice, IQGAP1 deficiency leads to gastric hyperplasia. The aim of this study was to elucidate the consequences of IQGAP1 deletion on H. pylori-induced gastric carcinogenesis.Transgenic mice deleted for iqgap1 and WT littermates were infected with Helicobacter sp., and histopathological analyses of the gastric mucosa were performed. IQGAP1 and E-cadherin expression was evaluated in gastric tissues and in gastric epithelial cell lines in response to H. pylori infection. The consequences of IQGAP1 deletion on gastric epithelial cell behaviour and on the acquisition of cancer stem cell (CSC)-like properties were evaluated. After one year of infection, iqgap1+/- mice developed more preneoplastic lesions and up to 8 times more gastro-intestinal neoplasia (GIN) than WT littermates. H. pylori infection induced IQGAP1 and E-cadherin delocalization from cell-cell junctions. In vitro, knock-down of IQGAP1 favoured the acquisition of a mesenchymal phenotype and CSC-like properties induced by H. pylori infection.Our results indicate that alterations in IQGAP1 signalling promote the emergence of CSCs and gastric adenocarcinoma development in the context of an H. pylori infection
    corecore