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ABSTRACT 20 

Campylobacter is among the most common causes of gastroenteritis worldwide. Campylobacter 21 

jejuni and Campylobacter coli are the most common species causing human-disease. DNA-sequence-22 

based methods for strain characterization have focussed largely on C. jejuni, responsible for 80-90% 23 

of infections, meaning that C. coli epidemiology has lagged behind. Here we have analyzed the 24 

genome of 450 C. coli isolates to determine genetic markers that can discriminate isolates sampled 25 

from 3 major reservoir hosts (chickens, cattle and pigs). These markers were then applied to identify 26 

the source of infection of 147 C. coli from French clinical cases. Using STRUCTURE software, 259 27 

potential host-segregating markers were revealed by probabilistic characterization of SNP frequency 28 

variation in strain collections from three different hosts. These SNPs were found in 41 genes or 29 

intergenic regions, mostly coding for proteins involved in motility and membrane functions. Source 30 

attribution of clinical isolates based on the differential presence of these markers confirmed chicken 31 

as the most common source of C. coli infection in France. 32 

 33 

IMPORTANCE Genome-wide and source attribution studies based on Campylobacter species have 34 

shown their importance for the understanding of foodborne infections. Although the use of MLST 35 

based on 7 genes from C. jejuni is a powerful method to structure populations, when applied to C. 36 

coli results have not clearly demonstrated their robustness. Therefore, we aim here to provide more 37 

accurate data based on the identification of single-nucleotide polymorphisms. Results from this 38 

study reveal an important number of host-segregating SNPs, found in proteins implied in motility, 39 

membrane functions or DNA repair systems. These findings offer new interesting opportunities for 40 

further study on C. coli adaptation to its environment. Additionally, the results demonstrate that 41 

poultry is potentially the main reservoir of C. coli in France.  42 
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INTRODUCTION 43 

Campylobacter is the leading cause of bacterial gastroenteritis worldwide (1), with around 800,000 44 

campylobacteriosis cases in the USA (2) and 200,000 in the European Union (3) each year. 45 

Demographic, dietary and surveillance programs variations have made it difficult to generalise 46 

understanding of Campylobacter epidemiology to all countries. For example, while there are an 47 

estimated 68,000 foodborne infections every year in France (4), the number attributable to 48 

Campylobacter is not clearly defined, and there are questions about the relative importance of 49 

different Campylobacter species (5) (6) (7). 50 

 51 

C. jejuni and C. coli are part of the commensal microbiota of many bird and animal species (8). 52 

Human infection typically occurs via consumption of contaminated meat - especially chicken (9) (10) 53 

(11), water or direct contact with animals (livestock farming). Infection is usually self-limiting with 54 

mild symptoms including abdominal cramps, diarrhoea and fever. However, more severe symptoms 55 

such as bloodstream infections and vascular disease can occur, particularly at the extreme ages of 56 

life, in immunosuppressed, diabetic or cancer patients, and in rare cases, post-infectious 57 

complications include Guillain–Barré syndrome (12) and irritable bowel syndrome (13). Prolonged or 58 

severe campylobacteriosis can require the administration of macrolide (azithromycin) or quinolone 59 

(ciprofloxacin) (14) (15) antibiotics but increasing resistance, particularly among C. coli isolates (16), 60 

is reducing treatment options. 61 

 62 

C. coli is responsible for an increasing number of infections, accounting for approximately 15% of all 63 

campylobacteriosis cases (6). While much research focuses on C. jejuni, accounting for about 85% of 64 

cases, there are proportional differences between countries potentially reflecting variations in diet 65 
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(17) and host source (18) (19). European studies have typically associated C. coli with pigs and sheep 66 

(5) (20) (21). However, intensive agricultural practices in recent decades have dramatically changed 67 

the distribution of livestock species on earth creating opportunities for host transitions (22). This has 68 

likely driven changes to the natural host associations of both C. jejuni and C. coli which are regularly 69 

isolated from cattle and chickens (9). This host melting-pot has also dramatically affected the 70 

evolution of livestock associated C. coli leading to the emergence of a dominant disease-causing C. 71 

coli lineage, the ST-828 clonal complex (CC-828) (23), that has a mosaic genome with over 10% of 72 

the genes having been acquired from C. jejuni by horizontal gene transfer (24) (25) (26). This 73 

genome plasticity is particularly of concern for C. coli which acquires antimicrobial resistance genes 74 

more easily than C. jejuni (14) (16). 75 

 76 

Genotyping methods such as multilocus sequence typing (MLST) (27) (28) have improved our 77 

understanding of Campylobacter population structure, revealing host-specialist and host-generalist 78 

lineages (29). This host association has underpinned the development of methods that 79 

quantitatively attribute the source of human infections (9) (11). However, rapid host-switching by 80 

host generalist Campylobacter, including C. coli CC-828, can often confound these methods because, 81 

for some lineages, strains associated with one host source can be found in another (22) (30). The 82 

adoption of whole genome sequencing techniques and availability of curated genome databases 83 

(31) have allowed the incorporation of a broader number of host-segregating epidemiological 84 

markers in source attribution methods (32) (33). This additional genome information has increased 85 

the resolution allowing attribution of invasive/non-invasive strains from poultry (34) as well as 86 

geographical attribution of UK/USA isolates (19). However, almost all studies focussed exclusively on 87 

C. jejuni (35), and no study aimed to specifically identify host-segregating markers in C. coli genomes. 88 
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 89 

In this study, we analyzed 450 C. coli genomes from public databases with defined sampling sources 90 

including chickens, cattle and pigs. Using comparative genomics approaches we: (i) tested the ability 91 

of traditional MLST-based methods to determine the source of C. coli with isolates from known 92 

source reservoirs; (ii) identified host-segregating SNPs in C. coli genomes; (iii) determined the 93 

relative contribution of different C. coli infection sources in France. MLST was found to be a good 94 

proxy for more complex whole genome SNP-based analysis, showing similar power for segregating 95 

isolates from cattle host. However, additional discrimination of isolates from chicken and pig hosts 96 

was achieved by identifying genome-wide host-segregating SNPs. In the final probabilistic model, 97 

using 259 host-segregating SNPs, chicken was found to be the most common source of C. coli 98 

infection in France.  99 
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RESULTS 100 

 101 

CC-828 isolates segregate by host 102 

From all 3 datasets, Dataset S1, S2 and S3 (cf. material and methods), nearly all isolates belonged to 103 

the clonal complex -828 (780 isolates out of 900). The second most common clonal complex 104 

identified was ST-1150 (26) with four isolates, sampled from chicken. From the allelic profiles 105 

minimum spanning tree, 3 clusters can be identified corresponding to the source of isolation (Figure 106 

1). Cattle isolates clustered together, with 162 isolates (64.8% of all cattle isolates) assigned to ST-107 

1068 (36). Chicken and pig isolates belonged to 78 and 83 sequence types respectively (contrary to 108 

cattle with 27 different sequence types), with 24.2% isolates belonging to STs -828, -829, -825, -854, 109 

and -1119. Furthermore, 40.1% of all clinical isolates belonged to STs -825, -827, -832 and -860. 110 

Initial evidence for a role for chicken as a reservoir for human infection was provided by the 111 

clustering of clinical isolates together with isolates from chicken on the phylogenetic tree. The 112 

second tree constructed using maximum-likelihood approach from concatenated SNPs sequences 113 

revealed distinctive partitioning of isolates according to source (Figure 2). C. coli isolated from cattle 114 

constitute a very distinct cluster; 168 isolates (67.2% of all cattle isolates) are located at the bottom 115 

of the tree and belonged to ST-1068. Distances were also shorter within cattle population compared 116 

to chicken and pig isolates where more variability was observed within both clades. While many 117 

clinical isolates clustered among chicken isolates, six clinical isolates were found along a long branch 118 

of the chicken’s clade - these isolates were interestingly attributed to pig using STRUCTURE (below). 119 

 120 

  121 
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Host-segregating SNPs differentiate C. coli isolated from different hosts 122 

Putative host-segregating SNPs were identified by aligning all 450 isolates selected for marker 123 

determination against three C. coli reference genomes. Alignment of isolates against the OR12 C. coli 124 

reference strain identified 283,320 variant sites. In order to remove weakly discriminating 125 

polymorphisms, SNP versions represented in more than two thirds of all isolates were filtered, 126 

leaving 26,131 variant sites. Similar alignment and filtering performed against the HC2-48 strain 127 

resulted in 202,111 variants, filtered to 24,395; and alignment against the ZV1224 reference 128 

identified 242,574 SNPs, which were filtered to 20,827. Host-segregating SNPs were identified by 129 

performing source attribution tests using each variant individually and all 450 isolates. SNPs with at 130 

least 70 % accuracy for at least one source in the self-attribution test included 43, 183 and 33 from 131 

each alignment with the OR12, HC2-48 and ZV1224 reference strains, respectively (Table 1). Most of 132 

the self-attribution tests showed rates fluctuating between 30% and 40% (Figure 3) (51.2%, 50.5%, 133 

48% of all variants for the chicken, cattle and pig variants, respectively); 33% indicates a complete 134 

inability to differentiate 3 individuals. In total, 259 host-segregating SNPs from 41 nucleotide 135 

sequences were carried forward for further analyses.  136 

 137 

To contextualize host-segregating SNPs within genes, Blast-x annotation identified 32 coding regions 138 

for known proteins, 5 hypothetical proteins as well as 4 intergenic regions (Suppl Table S1). Several 139 

SNPs (n=27) were found in proteins involved in motility, which plays an important role in bacterial 140 

host adaptation: 12 and 4 SNPs in flagellar proteins FliK (with 2 SNPs in its basal-body rod 141 

modification protein FlgD) and FliD respectively, known to modulate flagellar hook length (37) and 142 

to act as an immunodominant protein (38); 5 SNPs from methyl-accepting chemotaxis proteins (TLP-143 

like protein (39)) or intergenic regions before methyl-accepting chemotaxis proteins; as well as 4 144 
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SNPs in one aerotaxis receptor belonging to CetC, a protein involved in regulating energy taxis (40). 145 

Another protein involved in bacterial adaptation to its environment has also been identified from 146 

OR12 chicken reference (3 SNPs): SbmA (41), a peptide antibiotic transporter described in many 147 

gram-negative bacteria. SNPs were also found in proteins involved in metabolism and membrane 148 

functions: 3 SNPs from an histidine kinase, 5 SNPs from a single-domain globin protein, known to 149 

play a role against NO and nitrosative stress (42), and a LamB/YcsF family protein with 5 SNPs. Two 150 

phosphate-binding proteins showed the presence of one SNP from OR12 chicken reference variant 151 

calling as well as one SNP from ZV1224 pig reference. Proteins involved in DNA activities have also 152 

been identified, with a total of 56 SNPs: DNA recombination/repair protein RecA, excinuclease ABC 153 

subunit C (UvrC) (43), two restriction endonucleases from HC2-48 and ZV1224 references, and one 154 

transcriptional regulator. Two hypothetical proteins from OR12 and ZV1224 with 11 and 8 host-155 

segregating SNPs respectively have been found to be the same protein: its domains and amino-acid 156 

sequence depending the source should be further investigated. Finally, a total of 110 SNPs were 157 

within 2 hypothetical proteins (from the HC2-48 cattle reference), which reflected highly variable 158 

and isolate-specific regions, and should not be taken into account. 159 

 160 

Genome-wide host-segregating SNPs provide more accurate source attribution than MLST alleles 161 

The degree of SNP segregation among isolates from different hosts, and hence the potential as 162 

marker for source attribution using STRUCTURE, was quantified. Self-attributions of chicken and pig 163 

isolates within the marker-determination dataset were consistently correct (Table 2). Using 43 SNPs 164 

detected from OR12 alignment as host-segregating markers allowed an average correct self-165 

attribution of 88.35% (s.d. ± 6.2%), 63.75% (s.d. ± 9.2%) and 96.2% (s.d. ± 4.1%) for chickens, cattle 166 

and pigs respectively. Using 183 SNPs from HC2-48 alignment correct self-attribution was achieved 167 
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for chicken, cattle and pig isolates with 91.05% (s.d. ± 5.7%), 75% (s.d. ± 9.7%) and 42.45% (s.d. ± 168 

18.7%) accuracy respectively, and 74.95% (s.d. ± 13.9%), 19.65% (s.d. ± 10.1%) and 94.65% (s.d. ± 169 

5.2%) for the 33 SNPs from ZV1224 alignment. Low self-attribution rate of cattle isolates using SNPs 170 

from pig reference was observed: these isolates were not correctly attributed and were considered 171 

as 50% chicken and 50% pig. When using all the SNPs simultaneously (n=259), correct self-172 

attribution showed average scores of 91.95% (s.d. ± 5.86%), 77% (s.d. ± 8.65%) and 95.25% (s.d. ± 173 

4.4%) for chickens, cattle and pigs respectively. This is a considerable improvement of self-174 

attribution using the 7 MLST genes which returned average scores of 73.6% (s.d. ± 9.1%), 76.8% (s.d. 175 

± 9.4%) and 74.4% (s.d. ± 9.5%) for chickens, cattle and pigs respectively. Source attribution of cattle 176 

C. coli isolates of marker-determination dataset was similar between the two types of markers 177 

(genotype or allele) whereas SNPs performed significantly better for chicken and pig populations 178 

than the 7 MLST genes. Finally, the discriminatory power of host-segregating SNPs and MLST genes 179 

was evaluated performing source re-attribution of 299 C. coli isolates from the validation dataset. 180 

SNPs showed correct re-attribution proportions of 96.2% (s.d. ± 1.03%), 84% (s.d. ± 0%) and 89% 181 

(s.d. ± 0%), and MLST genes scores of 87% (s.d. ± 0%), 81% (s.d. ± 0%) and 65% (s.d. ± 0%) for 182 

chicken, cattle and pig populations, respectively (Figure 4). Overall, SNPs were able to better re-183 

attribute C. coli marker-determination and validation isolates to their source than MLST genes, more 184 

specifically for chickens and pig populations. 185 

 186 

Chickens are a major source of C. coli infection in France 187 

Source attribution of clinical isolates was performed using MLST alleles and all host-segregating SNPs 188 

with correct self-attribution >70% (n=259) in the marker-determination and training dataset using 189 

STRUCTURE (Figure 5). Using MLST genes, 89 clinical isolates (60.5%) were attributed to chickens, 13 190 
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to cattle (9%), 6 to pigs (4%) and 39 clinical isolates (26.5%) showed attribution scores lower than 191 

70% and were therefore considered as ”inconclusive attributions”. Inconclusive attributions 192 

specifically concern 3 commonly found sequence types:  STs -827, -1055 and -1595, representing 193 

48.7% of inconclusive attributions (n=19). In contrast, using the 259 SNPs, 138 isolates (94%) were 194 

attributed to chickens, 9 to pigs (6%) (with an average of source probability equal to 100%) and none 195 

to the cattle population. Therefore whatever the approach (MLST or SNPs), a large proportion of C. 196 

coli clinical isolates were attributed to chickens. However, the attribution scores were more variable 197 

with MLST (on average around 80%) whereas for the genome-wide host-segregating SNPs, the 198 

clinical isolates were more efficiently attributed to their infection source (Table 3).  199 
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DISCUSSION 200 

 201 

The increasing availability of bacterial isolate genome collections and bioinformatics tools for large-202 

scale analysis provides significant opportunities for understanding the genetic basis of phenotype 203 

variation in bacteria. Host adaptation is a key feature in the epidemiology of zoonotic pathogens 204 

(44), such as Campylobacter, and there has been considerable effort to identify host-associated 205 

genetic variation that can improve understanding of the evolution and origin of infecting strains. 206 

Comparative genomic analyses have revealed core and accessory genome variation within C. jejuni 207 

that is associated with a given host/environment (45) (46) and this has been used to identify 208 

genome-wide host-segregating markers for source attribution (32). However, little comparable work 209 

has focussed on C. coli. 210 

 211 

Genetic variation in bacterial genomes not only reflects adaptation to different hosts/sources but 212 

also temporal and geographic variation among sample collections (19). Some studies avoid the 213 

potential confounding effect of phylogeographic variation by using national isolate collections: for 214 

example, Campylobacter attribution studies performed in Scotland (24) (47), Switzerland (48), New 215 

Zealand (49) and Germany (17). This has been informative for understanding the source of human 216 

infection but, because of the strong segregation of genetic variation by host (18), it remains possible 217 

that collections from multiple countries could be combined to create international isolate 218 

collections. This would consolidate research effort and provide the large genome collections 219 

necessary for probabilistic attribution models and potential to identify universal host-segregating 220 

markers. 221 

 222 
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Here we analyzed C. coli isolates from Europe and the USA using the conventional MLST method 223 

established by Dingle et al., in 2001 (27) and specific host-segregating SNPs. A single clonal complex 224 

(CC-828) dominated among the isolates independently of source and geographical location, 225 

representing 780 isolates over 900. The predominance of CC-828 isolates among C. coli (66% - 81% 226 

of all isolates (17) (24) (36)) with the ST-1150 complex accounting for most of the remaining isolates 227 

(26), confounds efforts to identify host-association at the clonal complex level – that is possible for 228 

C. jejuni (18). However, within CC-828 there was evidence for sequence types that were more 229 

commonly isolated from particular hosts. For example, ST-829, ST-832, ST-825 and ST-860 230 

predominated among chicken isolates, ST-827 was more common in pigs and ST-1068 was nearly 231 

exclusive to cattle, consistent with previous studies (36) (50). Similar low diversity in cattle C. coli 232 

isolates has previously been described among ruminant isolates from Scotland (47). A weaker host-233 

association signal, based upon MLST alleles, compared to C. jejuni has made it difficult to 234 

distinctively partition C. coli by source (49). However, genotype segregation in C. coli provided initial 235 

evidence that the genomes of these isolates would contain host-segregating genetic signatures. 236 

 237 

Estimating the discriminating power of genetic markers can be performed by determining the 238 

probability that a given genetic element - such as a single mutation - will be found among isolates 239 

from a given host (self-attribution). As in previous studies (32) (33), we used STRUCTURE software 240 

and self-attribution to determine the predictive power of putative host-segregating markers. 241 

Moreover, a recent review (35) mentioned that MLST genes were used for self-attribution tests in 6 242 

studies for both C. coli and C. jejuni (11) (24) (32) (33) (48) (51). However, correct attribution rates 243 

for C. coli showed inconsistent results for chickens (63-95%), cattle (26-89%) and pigs (70-94%), 244 

suggesting that a SNP-based approach may be advantageous for source attribution of C. coli. In fact, 245 
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we showed here that SNPs as host-segregating markers provided more accurate results for chickens, 246 

cattle and pigs with 92% (s.d. ± 5.9%), 77% (s.d. ± 8.7%) and 95.3% (s.d. ± 4.4%) correct attribution 247 

rates, respectively. While the difficulty in precise self-attribution using MLST genes is undoubtedly 248 

linked to reduced resolution, as CC-828 isolates dominate among C. coli populations (23), the 249 

transmission of C. coli between different host species would also reduce the discriminatory power of 250 

source-specific markers potentially leading to incorrect source attribution (22). Adjusting for single 251 

mutation determination thus provided promising candidates for accurate source attribution of 252 

human C. coli isolates. Of 669,019 SNPs from the alignment of 450 genomes against 3 references, 253 

259 SNPs in genes associated with cell membrane (transporters, binding proteins), chemotaxis (FliK, 254 

FliD, TLP-like protein), DNA activities (RecA, UvrC) or energy (CetC) functions were chosen for 255 

attributing 147 clinical C. coli isolates to source. 256 

 257 

It is known that poultry are a major reservoir for human C. jejuni infection (8), with a ratio of 9:1 for 258 

C. jejuni and C. coli, respectively (36). Previous studies focussing on the source of C. coli infection 259 

have come to contrasting conclusions. In France, Sweden, the UK and the USA, the high prevalence 260 

of C. coli in pigs led to the assumption of the role of this reservoir in human infection (5) (20) (21), up 261 

to a ratio of 9:1 in favor of C. coli (36). However, in New Zealand, where human C. coli infection is 262 

also common, there is a low prevalence in pigs (49). Estimates of the relative contribution of 263 

different host sources to human infection varies among studies (11) (17) (24) (47) (48) (49) (52) with 264 

attribution to poultry (38-86%), ruminants (0-55%) and pigs (1-32%) all being implicated. With the 265 

exception of two studies, including rural populations in Scotland and New Zealand, that largely 266 

attribute human C. coli infections to sheep (47) and ruminants (49), source attribution studies 267 

typically assign a principal role for poultry in human infection.  268 
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 269 

It is likely that there are differences in the major reservoirs of C. coli infection in different countries 270 

but quantifying this requires accurate estimation. Estimates based upon MLST loci provided source 271 

probabilities with some uncertainty. Specifically, although approximately 40% of the 147 French 272 

clinical isolates sampled in this study were clearly attributed (>90% probability, Figure 5), the 273 

remaining isolates showed variable scores with many attributed with <60% probability. Overall, 274 

MLST-allele-based analyses did assign chicken as a major reservoir for C. coli with 89 isolates (61%) 275 

attributed with a score equal or greater than 70%. However, this proportion was greatly increased 276 

with more accurate attribution scores when using host-segregating SNPs in the attribution model. 277 

Specifically, chicken was predicted to be the source of C. coli infection for 138 isolates, constituting 278 

94% of the clinical samples. In comparison, two recent studies showed that sources of infection of C. 279 

jejuni are more evenly shared between chicken and cattle population in France, with approximately 280 

50% for chicken and 40% for cattle, respectively (33) (34). To draw source attribution comparisons 281 

between NA and France, additional analyses have been performed using 265 clinical isolates 282 

exclusively from the USA (Suppl Figure S2 and Suppl Table S2). The chicken source was again 283 

estimated as the main source of C. coli contamination in the USA as well as in France, but in a lower 284 

proportion (67.9% against 94%) followed by cattle (11.7%) and pig (20.4%). It would be interesting, 285 

in a complementary study, to compare the eating habits between these two countries. 286 
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In conclusion, the added resolution provided by genome-wide host-segregating markers not only 287 

improves source attribution for C. coli but also provides important information about the major 288 

infection reservoirs that has been missed in some previous studies (21). By combining whole 289 

genome analysis with national surveillance programs and source attribution modelling it was 290 

possible to identify the chicken reservoir as a major source of C. coli infection in France and abroad. 291 

These findings will support ongoing surveillance and the development of targeted interventions 292 

aimed at reducing the burden of human campylobacteriosis.  293 
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MATERIAL AND METHODS 294 

Campylobacter coli isolate datasets 295 

A total of 450 C. coli isolates genomes from two major regions where Campylobacters are a leading 296 

cause of foodborne infections, North America and Europe, were selected for the determination of 297 

host-segregating markers (Dataset S1). To reduce the detection of regional-specific markers, these 298 

genomes were randomly selected from multiple countries within these two regions. That included 299 

even numbers (n=150) of chicken, cattle and pig C. coli genomes to avoid bias in the identification of 300 

host-specific markers. This first dataset was comprised of 151 isolates from PubMLST databases (31) 301 

and 299 from the USA National Antimicrobial Resistance Monitoring System (NARMS) project (53). 302 

PubMLST genomes comprised 34% of that first dataset and included 47%, 7% and 47% of all chicken, 303 

cattle and pig marker-determination isolates, respectively. NARMS genomes comprised 66% of the 304 

dataset, and included 53%, 93% and 53% of all chicken, cattle and pig marker-determination 305 

isolates. These datasets were entirely composed of European and North American genomes. 306 

European isolates represented 29% of the dataset, including 41%, 1% and 45% of all chicken, cattle 307 

and pig isolates respectively, while North American isolates comprised 71% of the dataset including 308 

59%, 99% and 55% of all chicken, cattle and pigs isolates. North American isolates were mostly 309 

selected from the USA (n=315). Remaining isolates (n=4) were selected from Canada. A total of 424 310 

isolates (94%) were obtained from 2005 to 2019. 311 

 312 

A second dataset (validation dataset) comprised 300 supplementary C. coli isolates of known source 313 

reservoirs was used in order to test the discriminatory strength the host-segregating SNPs previously 314 

obtained (Dataset S2). This dataset comprised North American C. coli isolates from the NARMS 315 

project; 100 for each source. Finally, 150 French clinical isolates comprised a last set of genomes 316 
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(clinical dataset) and were used to attribute the putative source reservoir of clinical isolates (Dataset 317 

S3). This comprised 150 clinical isolates from French laboratories and hospitals surveillance network 318 

sampled from stools between 2015 to 2017. Clinical isolates were chosen to represent patients from 319 

diverse geographic regions in France, with a sex ratio of 1.03 and a mean age of 39.4 s.d. ±2.8 years 320 

old. 321 

 322 

Clinical isolate genomes had an average genome length of 1.7 Mbp (s.d. ± 69.7 Kbp) and an average 323 

number of contigs of 43. C. coli marker-determination isolates were on average 1.76 Mbp (s.d. ± 324 

81.2 Kbp) in length and comprised 83 contigs; and C. coli validation isolates were on average 1.78 325 

Mbp (s.d. ± 74.7 Kbp) in length over 78 contigs (Suppl Figure S1). This is consistent with other 326 

published C. coli genomes, estimated to ~1.7 Mbp in length (54). Furthermore, no significant 327 

difference in C. coli genome sizes from different hosts has been observed: C. coli isolated from 328 

chickens were on average 1.78 Mbp in length (s.d. ± 106 Kbp), 1.77 Mbp (s.d. ± 61.6 Kbp) for cattle 329 

isolates and 1.77 Mbp (s.d. ± 61 Kbp) for pig isolates. 330 

 331 

DNA extraction, genome sequencing and assembly 332 

DNA from clinical isolates was extracted using the MagNA Pure 6 DNA and Viral NA SV Kit and DNA 333 

purification was performed from bacterial lysis on a MagNA Pure 96 System (Roche Applied Science, 334 

Manheim, Germany). Quantification and purity checks (260/280 and 260/230 ratios) were 335 

determined by spectrophotometry (NanoDrop Technologies, Wilmington, DE, USA) before 336 

sequencing. Paired-end next-generation sequencing was performed on DNA samples using Illumina 337 

HiSeq 4000 technology (Integragen, Evry, France). Additionally, FastQC v0.11.8 (55) was used to run 338 

data quality tests. Genomic data was cleaned and genomes were assembled using Sickle v1.33 (56) 339 
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and SPAdes v3.10.1 (57), respectively. Genomes were then filtered in order to remove poor quality 340 

contigs: sequences with a length smaller than 160 nucleotides and a k-mer coverage less than 20x 341 

were removed. One isolate (2015_0475) showed an abnormal genome size of 2.5 Mbp after 342 

filtration and was excluded from subsequent analyses. 343 

 344 

Characterization of genomic variation 345 

In silico, MLST was performed for a comparative analysis with host-segregating SNPs. Profiles were 346 

obtained for all 900 isolates using 7 housekeeping genes (aspA, glnA, gltA, glyA, pgm, tkt and uncA) 347 

determined for Campylobacter species (27). Sequence types (STs) and clonal complexes (“CC”, 348 

groups of isolates with a sequence type that share four or more loci (27)) were defined using the 349 

sequence tag tool of PubMLST (58). Using this method, two clinical isolates (2016_1990 and 350 

2017_2288) and one validation isolate (FSIS11705596) were miss-identified as C. coli and were 351 

actually C. jejuni and removed from the dataset. The updated validation and clinical datasets were 352 

then comprised of 299 and 147 isolates, respectively. A phylogenetic tree was constructed according 353 

to all sequence types using GrapeTree (59). A second tree was built based on every host-segregating 354 

markers determined in this study, in order to make a direct comparison with the MLST tree. A multi-355 

fasta file containing sequences from concatenated SNPs of all isolates (n=896) was created. 356 

Sequences were aligned using Muscle v3.8.1551 (60) and a Newick format tree from maximum-357 

likelihood method was generated using Fasttree v2.1.11 (61). Microreact online platform was used 358 

to visualize the tree (62).  359 

 360 

To identify candidate SNPs, genome-wide variant calling was primarily performed by aligning all 361 

isolates from the marker-determination dataset (n=450) to C. coli reference genomes. Three 362 
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references from each source were chosen in order to target source-specific genomic regions and 363 

capture all potential markers: OR12 strain isolated from a chicken (NZ_CP019977.1) (63), HC2-48 364 

strain isolated from a cow (NZ_CP013034.1) (64) and ZV1224 strain isolated from a pig 365 

(NZ_CP017875.1) (65). The bwa v0.7.17 (66) tool developed for mapping sequences against given 366 

genomes was used here to align each isolate to OR12, HC2-48 and ZV1224 references. Alignment 367 

files were sorted using samtools v1.9 (67). Genotypes were determined with bcftools v1.9 “mpileup” 368 

variant calling tool (67), and 3 variant calling files (vcf) were generated (one for each reference). A 369 

script was written in Python (see data availability) to filter all SNP variations found in more than 2 370 

out of 3 isolates. Since a source represents 33% of the total dataset (150 isolates over 450), a 371 

proportion greater than 66% means that a same SNP variation is likely to be found in each of the 3 372 

selected sources. Therefore, this step enabled the removal of weakly discriminating polymorphisms 373 

and reduced the computational time of subsequent analyses. 374 

 375 

Identification of host-segregating marker 376 

In order to identify host-segregating markers, source attribution tests of marker-determination 377 

isolates (of known sources) were performed using all previously selected SNPs individually to 378 

identify host-segregating markers. A matrix was constructed of all genotypes in the 450 marker-379 

determination isolate dataset (nucleotides were translated into numbers: “1” for “A”, “2” for “T”, 380 

etc.). Source attribution tests were performed in triplicate for each SNP using STRUCTURE (68), with 381 

the no admixture model, 3 putative populations (K = 3), 10,000 iterations, and a burn-in period of 382 

10,000 iterations. For each STRUCTURE test, 60 different random isolates (20 from each population) 383 

were set to “unknown source” (POPFLAG = 0) in order to estimate the probability of correct self-384 

attribution, and then to evaluate the SNP host-segregating strength. Each SNP with 70% or greater 385 
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of total correct self-attributions for at least one source was selected; a minimum of 66% (here 386 

rounded up to 70%) of source attribution rate indicates that a variant is discriminating between at 387 

least 1 out of 3 sources. Additionally, genomic sequences containing the selected SNPs were 388 

extracted from the corresponding reference (OR12, HC2-48 or ZV1224) and annotated using blast-x 389 

online tool (69). 390 

 391 

Validation of the discriminatory power of host-segregating markers 392 

To validate the capability of the selected SNPs to discriminate isolates from different populations, 393 

STRUCTURE tests were run again using the marker-determination dataset and different sets of 394 

markers: SNPs contained in the same CDS, all SNPs determined from OR12, HC2-48 and ZV1224 395 

alignments and all SNPs from all alignments. One hundred tests were then performed using each set 396 

of SNPs and 60 random isolates per test for self-attribution (POPFLAG = 0) (“no admixture model”, K 397 

= 3, 10,000 iterations and a burn-in period of 10,000 iterations). Additionally, source attribution of 398 

299 validation isolates of known source reservoirs, which were not used for SNP determination, was 399 

performed. Specifically, each SNP was obtained using samtools mpileup option. STRUCTURE was run 400 

10 times using marker-determination isolates as training dataset (n=450) and validation dataset as 401 

unknown source isolates (POPFLAG = 0). STRUCTURE model parameters remained unchanged. Each 402 

validation isolate was attributed to its source based on the average of attribution rate of all 10 tests. 403 

An isolate was considered correctly source re-attributed with a STRUCTURE score greater than 70%. 404 

In each case the same method was performed simultaneously with MLST alleles to compare the 405 

discriminating strength of both type of markers (SNP or allele). 406 

 407 

  408 
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Source attribution of clinical isolates 409 

Similar to validation analysis, source attribution of C. coli clinical isolates was performed using 410 

determined host-segregating markers thus in order to identify the main source of infection in 411 

France. For each SNP (n=259), every genotype was extracted from all clinical isolates using samtools 412 

mpileup option. STRUCTURE was run 10 times using marker-determination isolates as training 413 

dataset (n=450) and clinical dataset (n=147) as unknown source isolates (POPFLAG = 0) (K = 3, 414 

10,000 iterations and a burn-in period of 10,000 iterations). Each clinical isolate was attributed to a 415 

source based on the average of attribution rate of all 10 tests. Source attribution of clinical isolates 416 

was performed simultaneously with MLST alleles to compare proportions of each source between 417 

both type of markers (SNP or allele).  418 
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DATA AVAILABILITY 419 

All 900 C. coli genomes are available using IDs listed in Dataset S1, S2 and S3: BioSample and 420 

PubMLST IDs for NCBI and PubMLST databases respectively. 421 

 422 

Personnal VCF filter Python script available on GitHub: QuentinJehanne. (2020, April 8). 423 

QuentinJehanne/ccoli_2020: v1 of a personal VCF filter (Version v1.0.0). Zenodo. 424 

http://doi.org/10.5281/zenodo.3744758. 425 
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Table 1. Variant calling comparison between 3 references of C. coli 657 
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Table 2. Rates of correct self-attributions of marker-determination isolates using 5 different set of 659 

markers 660 
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Table 3. Source attribution scores of clinical isolates  662 
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Figure Legends 663 

 664 

Figure 1: Phylogenic tree based on MLST analysis 665 

The minimum spanning tree was generated using GrapeTree from the sequence types of all 896 C. 666 

coli isolates, based on 7 MLST genes (aspA, glnA, gltA, glyA, pgm, tkt and uncA) extracted using 667 

PubMLST platform. Orange color represents isolates isolated from chickens, green color from cattle, 668 

magenta color from pigs and red color are for clinical isolates. Circle sizes are proportional to the 669 

number of isolates and the scale bar represents a genetic distance of 1. 670 

 671 

Figure 2: Phylogenic tree built from concatenated selected SNPs 672 

Tree designed using maximum-likelihood phylogeny between 896 isolate sequences built from the 673 

concatenation of all genotypes of the selected SNPs (n=259). Orange nodes are the chicken 674 

population isolates, green nodes for cattle isolates, pink nodes for pig isolates and red nodes for 675 

clinical isolates. Orange circle shows an estimation of the chicken cluster, green circle for the cattle 676 

cluster and pink circle for the pig cluster and the scale bar represents a genetic distance of 0.24. 677 

Clinical isolates are mostly located within the chicken cluster, which is consistent with the 678 

probabilistic attribution model. 679 

 680 

Figure 3: Host-segregating rate of all variants obtained from the alignment of 450 marker-681 

determination isolates against 3 references 682 

Source attribution rates (y axes) were obtained testing 26,131, 24,395 and 20,827 SNPs from OR12 683 

(a), HC2-48 (b) and ZV1224 (c) references, respectively, and are shown here according to their 684 

genome position (left, x axis) and variant proportions (right, x axis). STRUCTURE software was run 3 685 
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times for each SNP (average attribution rates are shown here), using 390 C. coli randomly selected 686 

isolates as training dataset and 60 randomly selected isolates as test dataset. Orange color 687 

represents attribution rates and number of SNPs for chicken source, green color for cattle source 688 

and magenta color for pig source. A total of 259 SNPs showed attribution rates greater than 70% 689 

(red line) for one or more sources and were carried forward for further analyses: 43, 183 and 33 690 

SNPs from chicken, cattle and pig references, respectively. Scores fluctuated between 30% and 40% 691 

and highest attribution rates for each host reservoir were found in the corresponding source 692 

reference. However, OR12 reference showed two distinct regions of the genome: one part 693 

containing variants discriminating the chicken source and another part the pig source. Two low 694 

variable regions (blanks), where no SNP from the variant calling step were selected, are also visible. 695 

 696 

Figure 4: Correct re-attribution proportions of 299 validation isolates using determined SNPs and 697 

MLST genes 698 

Source attribution strength of selected SNPs (a) and MLST genes (b) estimated using STRUCTURE 699 

software. A total of 299 isolates were tested (from the validation dataset) using marker-700 

determination isolates for training (n=450). Source attributions were performed 10 times using all 701 

selected SNPs (n=259) and MLST genes (n=7). Gray bars represent rate of correct source attribution 702 

for chicken population isolates, black bars for cattle isolates and white bars for pig isolates. An 703 

isolate was considered correctly source re-attributed with a STRUCTURE score greater than 70%. 704 

 705 

Figure 5: Population proportions of clinical isolates from source attribution  706 

Source attribution of clinical dataset using selected SNPs (a, n=259) and MLST genes (b, n=7). Clinical 707 

isolates (n=147) are represented on x axis and their attribution probabilities on y axis in orange for 708 
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chicken source, green for cattle source and pink for pig source. The poultry reservoir was estimated 709 

as the main source of C. coli contamination in France with 138 isolates (94%) attributed using host-710 

segregating SNPs and 89 isolates (61%) using MLST (isolates selected with source probabilities 711 

greater than 70%).  712 
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Supplementary Tables and Figures 713 

 714 

Dataset S1. Marker-determination dataset isolates 715 

 716 

Dataset S2. Validation dataset isolates 717 

 718 

Dataset S3. Clinical dataset isolates 719 

 720 

Suppl Figure S1. WGS data from all 900 C. coli isolates. 721 

 722 

Suppl Table S1. List of all determined proteins with their corresponding number of SNPs. 723 

 724 

Suppl Figure S2. Population proportions from source attribution of 265 C. coli clinical isolates from 725 

the USA. 726 

 727 

Suppl Table S2. List of all C. coli isolates from the USA selected for source attribution. 728 

 729 

 730 
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Table 1. Variant calling comparison between 3 references of Campylobacter coli 

Reference Variant calling raw
1
 Filtration

2
 Selected SNPs

3
 

OR12 (chicken) 283,320 26,131 43 

HC2-48 (cattle) 202,111 24,395 183 

ZV1224 (pig) 242,574 20,827 33 

 
1
Number of SNPs determined after aligning all isolates from marker-determination (n=450) dataset to 3 different references of C. coli : OR12 isolated from chicken, HC2-48 from 

cattle and ZV1224 from pig.  

2
Number of SNPs after the filtration of genotypes which represent more than two third of all isolates. 

3
Selected SNPs with 70% or greater of total correct self-attributions.  
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Table 2. Rates of correct self-attributions of marker-determination isolates using 5 different set of markers 

 

 Chicken isolates self-attributions (n = 150) Cattle isolates self-attributions (n = 150) Pig isolates self-attributions (n = 150) 

Set of markers Rate of correct attribution (%) Std deviation (%) Rate of correct attribution (%) Std deviation (%) Rate of correct attribution (%) Std deviation (%) 

43 SNPs (OR12) 88.4 ± 6.24 63.8 ± 9.22 96.2 ± 4.09 

183 SNPs (HC2-48) 91.1 ± 5.74 75.0 ± 9.69 42.5 ± 18.74 

33 SNPs (ZV1224) 75.0 ± 13.9 19.7 ± 10.08 94.7 ± 5.23 

259 SNPs (all) 92.0 ± 5.86 77.0 ± 8.65 95.3 ± 4.4 

7 genes (MLST) 73.6 ± 9.06 76.8 ± 9.42 74.4 ± 9.50 

 

Discriminating strength of selected SNPs and MLST genes were estimated using marker-determination isolates. From 450 initial isolates, random selections of 390 and 60 

isolates were used for training and self-attribution (sources set to “unknown”), respectively. Self-attributions were performed 100 times using selected SNPs from chicken 

alignment (n=43), from cattle alignment (n=183), from pig alignment (n=33), from all alignments (n=259) and 50 times using MLST genes (n=7). Since multiple tests were 

performed for each set of markers using 60 randomly selected isolates, standard deviations were calculated.
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Table 3. Source attribution scores of clinical isolates 

 Attribution to chicken source Attribution to cattle source Attribution to pig source Inconclusive attributions 

Set of markers % of clinical isolates (Average score %) % of clinical isolates (Average score %) % of clinical isolates (Average score %) % of clinical isolates (Average score %) 

259 SNPs 93.88 (100.0) 0.0 (0.0) 6.12 (100.0) 0.0 (0.0) 

7 MLST genes 60.54 (88.35) 8.84 (86.91) 4.08 (83.22) 26.53 (50.59) 

 

Data for source attribution of clinical isolates dataset using selected SNPs (n=259) and MLST genes (n=7). “% of clinical isolates” show the distribution of estimated sources 

among clinical isolates with “Average score” as their average of individual attribution rate. Using determined SNPs, source attribution rates for clinical isolates were constant 

whereas using MLST genes, source attribution showed variable results. 
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