13 research outputs found

    New neurons in aging brains: molecular control by small non-coding RNAs.

    Get PDF
    Adult neurogenesis generates functional neurons from neural stem cells present in specific brain regions. It is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus (DG), in the hippocampus. With age, the function of the hippocampus and particularly the DG is impaired. For instance, adult neurogenesis is decreased with aging, in both proliferating and differentiation of newborn cells, while in parallel an age-associated decline in cognitive performance is often seen. Surprisingly, the synaptogenic potential of adult-born neurons is only marginally influenced by aging. Therefore, although proliferation, differentiation, and synaptogenesis of adult-born new neurons in the DG are closely related to each other, they are differentially affected by aging. In this review we discuss the crucial roles of a novel class of recently discovered modulators of gene expression, the small non-coding RNAs, in the regulation of adult neurogenesis. Multiple small non-coding RNAs are differentially expressed in the hippocampus. In particular a subgroup of the small non-coding RNAs, the microRNAs, fine-tune the progression of adult neurogenesis. This makes small non-coding RNAs appealing candidates to orchestrate the functional alterations in adult neurogenesis and cognition associated with aging. Finally, we summarize observations that link changes in circulating levels of steroid hormones with alterations in adult neurogenesis, cognitive decline, and vulnerability to psychopathology in advanced age, and discuss a potential interplay between steroid hormone receptors and microRNAs in cognitive decline in aging individuals

    A multi-level assessment of the bidirectional relationship between aging and the circadian clock

    Get PDF
    The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.Circadian clocks in health and diseas

    Distinct Temporal Expression of 5-HT1A and 5-HT 2A Receptors on Cerebellar Granule Cells in Mice

    Get PDF
    Serotonin plays an important role of controlling the physiology of the cerebellum. However, serotonin receptor expression has not been fully studied in the developing cerebellum. We have recently shown that cerebellar granule cells transiently express 5-HT3 receptors. In the present study, we investigate expression of 5-HT1 and 5-HT2 receptors in the mouse cerebellum both during postnatal development and in juvenile mice. Here, we show for the first time that 5-HT1A and 5-HT2A receptors are present on cerebellar granule cells with a distinct temporal expression pattern: 5-HT1A receptors are expressed only during the first 2 weeks, while 5-HT2A receptor expression persists until at least 8 weeks after birth. Because of its prolonged expression pattern, we investigated the electrophysiological properties of the 5-HT2A receptor. 5-HT2A receptors expressed by cerebellar granule cells promote stability by reducing variability of the synaptic response, and they modulate the paired-pulse ratio of the parallel fibre-Purkinje cell synapse. Furthermore, pharmacological block of 5-HT2A receptors enhances short-term synaptic plasticity at the parallel fibre-Purkinje cell synapse. We thus show a novel role for serotonin in controlling function of the cerebellum via 5-HT2A receptors expressed by cerebellar granule cells

    Uncovering functional signature in neural systems via random matrix theory

    Get PDF
    Neural systems are organized in a modular way, serving multiple functionalities. This multiplicity requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibitory, phase-opposing) interactions take place across brain modules. Unfortunately, most methods to detect modules from time series either neglect or convert to positive, any measured negative correlation. This may leave a significant part of the sign-dependent functional structure undetected. Here we present a novel method, based on random matrix theory, for the identification of sign-dependent modules in the brain. Our method filters out both local (unit-specific) noise and global (system-wide) dependencies that typically obfuscate the presence of such structure. The method is guaranteed to identify an optimally contrasted functional signature', i.e. a partition into modules that are positively correlated internally and negatively correlated across. The method is purely data-driven, does not use any arbitrary threshold or network projection, and outputs only statistically significant structure. In measurements of neuronal gene expression in the biological clock of mice, the method systematically uncovers two otherwise undetectable, negatively correlated modules whose relative size and mutual interaction strength are found to depend on photoperiod. Author Summary In recent years an increasing number of studies demonstrate that functional organization of the brain has a vital importance in the manifestation of diseases and aging processes. This functional structure is composed of modules sharing similar dynamics, in order to serve multiple functionalities. Here we present a novel method, based on random matrix theory, for the identification of functional modules in the brain. Our approach overcomes known inherit methodological limitations of current methods, breaking the resolution limits and resolves a cell to cell functional networks. Moreover, the results represent a great potential for detecting hidden functional synchronization and de-synchronization in brain networks, which play a major role in the occurrence of epilepsy, Parkinson's disease, and schizophrenia.Theoretical Physic

    Aging selectively dampens oscillation of lipid abundance in white and brown adipose tissue

    Get PDF
    Lipid metabolism is under the control of the circadian system and circadian dysregulation has been linked to obesity and dyslipidemia. These factors and outcomes have also been associated to, or affected by, the process of aging. Here, we investigated whether murine white (WAT) and brown (BAT) adipose tissue lipids exhibit rhythmicity and if this is affected by aging. To this end, we have measured the 24 h lipid profiles of WAT and BAT using a global lipidomics analysis of >1100 lipids. We observed rhythmicity in nearly all lipid classes including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Overall, similar to 22% of the analyzed lipids were considered rhythmic in WAT and BAT. Despite a general accumulation of lipids upon aging the fraction of oscillating lipids decreased in both tissues to 14% and 18%, respectively. Diurnal profiles of lipids in BAT appeared to depend on the lipid acyl chain length and this specific regulation was lost in aged mice. Our study revealed how aging affects the rhythmicity of lipid metabolism and could contribute to the quest for targets that improve diurnal lipid homeostasis to maintain cardiometabolic health during aging.Diabetes mellitus: pathophysiological changes and therap

    Serotonergic control of Purkinje cell maturation and climbing fibre elimination by 5-HT3 receptors in the juvenile mouse cerebellum

    No full text
    Functional serotonin 3 (5-HT3) receptors are transiently expressed by cerebellar granule cells during early postnatal development, where they modulate short-term synaptic plasticity at the parallel fibre-Purkinje cell synapse. Here, we show that serotonin controls maturation of Purkinje cells in the mouse cerebellum. The 5-HT3 receptors regulate morphological maturation of Purkinje cells during early postnatal development, and this effect is mediated by the glycoprotein reelin. Using whole-cell patch-clamp recordings we also investigated physiological development of Purkinje cells in 5-HT3A receptor knockout mice during early postnatal development, and found abnormal physiological maturation, characterized by a more depolarized resting membrane potential, an increased input resistance and the ability to fire action potentials upon injection of a depolarizing current at an earlier age. Furthermore, short-term synaptic plasticity was impaired at both the parallel fibre-Purkinje cell and the climbing fibre-Purkinje cell synapses, and both the amplitude and the frequency of spontaneous miniature events recorded from Purkinje cells were increased. The expedited morphological and physiological maturation affects the whole cerebellar cortical network, as indicated by delayed climbing fibre elimination in 5-HT3A receptor knockout mice. There was no difference between wild-type and 5-HT3A receptor knockout mice in any of the morphological or physiological properties described above at later ages, indicating a specific time window during which serotonin regulates postnatal development of the cerebellum via 5-HT3 receptors expressed by granule cells
    corecore