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Abstract

Neural systems are organized in a modular way, serving multiple functionalities. This multi-

plicity requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibi-

tory, phase-opposing) interactions take place across brain modules. Unfortunately, most

methods to detect modules from time series either neglect or convert to positive, any mea-

sured negative correlation. This may leave a significant part of the sign-dependent func-

tional structure undetected. Here we present a novel method, based on random matrix

theory, for the identification of sign-dependent modules in the brain. Our method filters out

both local (unit-specific) noise and global (system-wide) dependencies that typically obfus-

cate the presence of such structure. The method is guaranteed to identify an optimally con-

trasted functional ‘signature’, i.e. a partition into modules that are positively correlated

internally and negatively correlated across. The method is purely data-driven, does not use

any arbitrary threshold or network projection, and outputs only statistically significant struc-

ture. In measurements of neuronal gene expression in the biological clock of mice, the

method systematically uncovers two otherwise undetectable, negatively correlated modules

whose relative size and mutual interaction strength are found to depend on photoperiod.

Author Summary

In recent years an increasing number of studies demonstrate that functional organization

of the brain has a vital importance in the manifestation of diseases and aging processes.

This functional structure is composed of modules sharing similar dynamics, in order to

serve multiple functionalities. Here we present a novel method, based on random matrix

theory, for the identification of functional modules in the brain. Our approach overcomes

known inherit methodological limitations of current methods, breaking the resolution

limits and resolves a cell to cell functional networks. Moreover, the results represent a

great potential for detecting hidden functional synchronization and de-synchronization

in brain networks, which play a major role in the occurrence of epilepsy, Parkinson’s dis-

ease, and schizophrenia.
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Introduction

Understanding how billions of neurons collectively self-organise into a functionally ordered

brain able to coordinate a variety of neural, cognitive and bodily processes is probably the

most fundamental quest in neuroscience. Over the last decades, evidence has accumulated that

the functional organisation of the brain is modular and hierarchical [1]. This means that the

brain appears to be partitioned into mesoscopic ‘functional modules’ where each module is

composed of neurons with a relatively similar dynamical activity, while different modules are

comparatively less related to each other. Each such module may also contain submodules hier-

archically nested within it.

Reliably identifying functional modules is a nontrivial task because of their irreducibility

to contiguous anatomical regions defined a priori and/or to local neighbourhoods in the

underlying structural network of neuron-to-neuron anatomical connections [2]. Indeed,

while on the one hand functional modules partly reflect the local brain anatomy, on the

other hand major deviations between functional and structural networks are observed. One

key example is the distinctive ‘long-range’ left-right splitting of some functional modules:

often, a single module is found to be composed of two or more spatially non-contiguous

populations of neurons, located in possibly distant (sometimes symmetric, sometimes asym-

metric [3]) regions in the left-right direction [4, 5]. As an opposite example, an anatomically

well-defined brain region can be functionally heterogeneous [6, 7] and sometimes even

display anti-correlation between the activity of some of its parts [8, 9]. These examples indi-

cate the lack of a one-to-one correspondence between structural and functional modules,

showing that it is in general impossible to infer the latter purely from spatial information.

Indeed, it is expected that the mapping between functional and structural networks is many-

to-one, thus allowing a diversity of functions to arise from a common neuronal anatomy [2].

On top of this, both structural and functional brain networks are characterized by plasticity,
i.e. possibility of temporal rearrangements, but at typically different spatial and temporal

scales.

Precisely because they cannot be reduced to ‘spatially obvious’ brain regions, functional

modules must entail an emergent, non-structural level of neural organisation which can only

be investigated via the explicit analysis of time series of activity of individual neurons or, at a

more coarse-grained level, regions of interest (ROIs). More specifically, recordings of multiple

time series are normally used to construct an association (e.g. cross-correlation, mutual infor-

mation, etc.) matrix capturing the mutual relations between pairs of ROIs (see Fig 1). Next, the

matrix can be analysed in different ways to detect the presence of functional dependencies or

structure in the system.

Importantly, these dependencies can be positive (+) or negative (−), leading to measured

correlation or anti-correlation. For instance, synaptic interactions between neurons will influ-

ence their mutual phases and lead to different states of synchronization in a brain circuit. The

degree of synchronization (+) versus desynchronization (−) is important for neural function

and a disturbance in this balance can contribute to neurological disorders. In the paradigmatic

example of the central mammalian clock situated in the suprachiasmatic nucleus (SCN) of the

hypothalamus, the state of synchronization of neurons can influence responses of the circadian

system to light and is actually used to encode seasonal changes in day length. It has been sug-

gested that inhibitory (−) as well as excitatory (+) neuronal interactions will contribute to the

phase differences observed under different photoperiods [10, 11]. The balance between
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Fig 1. Illustration of the procedure of functional module identification from time series data (top) in the standard

approach (bottom left) and in our method (bottom right). In this example (our empirical data), we can see that the signals

share a very strong common periodic trend, which results in very high correlation values. In the standard approach, an

arbitrary threshold is defined and the original matrix is projected onto a functional network. This comes at the price of

discarding the majority of the data, most notably the negative correlations, and makes the output threshold-dependent.
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excitatory and inhibitory activity (E/I balance), which is a hallmark of healthy network perfor-

mance, can actually change with photoperiod [12].

The motivation for the present paper is the expectation that, in the brain and in possibly

many other biological networks as well, the presence of both positive and negative interactions

should have a significant impact on how the modular functional organization is both mathe-

matically defined and empirically identified. For instance, even within a functionally homoge-

neous region there may be negatively correlated substructures arising from the need to create

and/or modulate the internal mutual phase relationships. Similarly, across two functionally

distinct modules there may be a need for dependencies of both negative and positive sign,

depending on whether the two functions should inhibit or enhance each other. Consequently,

we stress that a proper definition of functional modules should take the sign of the defining

correlations into serious account and tools should be devised to reliably identify such sign-

dependent structure from time series data. This is crucial in order to map how function is dis-

tributed across the modular brain landscape and to properly constrain models of the underly-

ing neural dynamics.

In this paper, we argue that the available approaches to the theoretical definition and empir-

ical detection of functional modules treat negative dependencies in essentially unsatisfactory

ways. On one hand, most techniques either entirely dismiss negative values [13], or turn them

into positive ones [14], thereby using no information about the sign of the dependency. On

the other hand, the few methods that do take negative correlations into account use (null)

models that treat all pairwise correlation coefficients as statistically independent entities, thus

violating important structural properties of correlation matrices. Other popular approaches

like Principal Component Analysis (PCA) or Independent Component Analysis (ICA) look

for independent, rather than anticorrelated, components, thus serving a different purpose.

Moreover, most of these approaches fail to provide a stastistical validation of the modules iden-

tified, and are therefore prone to misidentification due to the presence of both ROI-specific

noise and brain-wide common trends obfuscating the underlying mesoscopic modular

patterns.

Here, we propose a novel method that targets specifically the positive and negative interac-

tions in brain data and filters the underlying noise and common trends using an appropriate

null model based on Random Matrix Theory (RMT). Our approach generalizes a recent com-

munity detection method tailored for correlation matrices [15, 16], originally formulated for

financial time series that have an inherently random and non-periodic pattern, and extends it

to the case where arbitrarily structured temporal trends are allowed. We also pay specific atten-

tion to the fact that noise and global trends have a previously overlooked coupled effect on the

spectrum of correlations, and we rigorously correct for this coupling. Technically, the method

makes use of a modified Wishart ensemble of random correlation matrices constructed using

precisely the same common trend and expected noise level as the empirical time series, but

under the null hypothesis that no modular organization is present. This ensemble serves as a

natural, reliable and more appropriate null model for correlation matrices arising in brain

Moreover, modules are searched for in the projected network using null models that are valid for graphs with independent

edges, but not for correlation matrices. We should note that there are recent approaches, which will be discussed in the next

section, that do not discard negative correlation. In our method, we compare the empirical correlation spectrum against a

null model specifically tailored for correlation matrices. This produces a filtered correlation matrix that is subsequently

searched for modules. These modules are guaranteed to be statistically significant, noise-free, overall positively correlated

internally and overall negatively correlated across. By directly producing a partition of the original time series into modules,

our method bypasses the functional network projection, avoiding the use of a threshold.

https://doi.org/10.1371/journal.pcbi.1006934.g001
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research. A comparison between empirical and null correlation matrices reveals the functional

modules present in the data and by construction absent in the model.

The resulting method is threshold-free and does not require the arbitrary projection onto a

network (see Fig 1). Moreover, in contrast with most of the current approaches, it is designed

to yield an optimally sign-contrasted structure, where positive interactions are clustered inside

the modules and negative values are expelled across modules. We call the resulting optimized

structure the functional signature of the system. This structure is composed of functional mod-

ules whose overall internal correlation is guaranteed to be positive and whose overall mutual

correlation is guaranteed to be negative. The method only outputs statistically significant

structure, if present. We should stress that in any stage of the process there are no presump-

tions about the output of the method (such as a predefined number or size of modules) and

the results are completely and non-parametrically driven by the data themselves. If needed, the

method can be used iteratively to detect sub-modules hierarchically nested within modules.

Besides formulating the method, we apply it to the analysis of the aforementioned SCN,

which is responsible for regulating the circadian rhythms of physiology and behaviour in

mammals. We chose the SCN of mice because of its relatively small size (ca 20,000 neurons)

and high degree of functional plasticity. Single SCN neurons are capable of generating circa-

dian rhythms in, amongst others, gene expression and electrical activity. The phase differences

between the cells can vary with changes in the environment, such as different photoperiods or

prolonged light exposure, or with an attenuation of the degree of coupling between the neu-

rons as seen in aging or disease. This makes the SCN an optimal case study for a dynamic net-

work of neurons with different internal oscillations, mechanistically coupled to E/I processes.

We show how our method can be used to reliably search the SCN for sign-dependent func-

tional modules reflecting the phase ordering of oscillating cell populations, based on both

strength and sign of their coupling interactions. We use samples taken from mice that were

subjected to different photoperiods. The method identifies two otherwise undetectable clusters

of functionally connected SCN neurons that have a strong resemblance to a known core/shell

distinction [17] and that have never been found before without the use of prior knowledge.

Importantly, we are able to detect physiological differences present in different photoperiods

in the functional signature of the two clusters. We find that the sizes of the two modules

change with photoperiod as the result of a majority of neurons remaining in the same module

irrespective of photoperiod, and a minority alternating between the two modules at their inter-

face. This finding highlights a possible population of alternating neurons responbile for the

functional plasticity required for adjustment to photoperiod and circadian modulation.

Results

Limitations to overcome in the identification of sign-dependent functional

modules

Our approach aims at overcoming various limitations of the existing methods. It is therefore

convenient to briefly mention these limitations in order to gradually introduce some of the

defining elements of our method.

First, we want to avoid the use of thresholds on the entries of the correlation matrix. Indeed,

most approaches identify functional modules via the introduction of a threshold used to proj-

ect the original correlation matrix into a network (see Fig 1) [18, 19]. On this network, various

graph-theoretic quantities can be measured to identify modules in terms of e.g. connected

components [20], rich clubs [21], k-cores [22] or communities [23]. The well known limita-

tions of this approach are the uncontrolled information loss induced by discarding some of the

observations, the complete arbitrariness of the choice of the threshold value, and the resulting

Uncovering functional signature in neural systems via random matrix theory
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unavoidable threshold-dependence of the output [24]. Moreover, since thresholds are intro-

duced to project the original matrix into a sparse network, and since the number of negative

entries in such matrix is usually smaller than that of positive ones, this procedure essentially

imposes a positive threshold, thereby completely disregarding all the negative correlations.

Second, we want to avoid turning the negative correlations into positive ones. Based on the

(correct) consideration that negative correlations indicate functional dependency (rather than

no dependency), many approaches aim at exploiting both positive and negative values as cohe-

sive interactions in the definition of functional modules. To this end, they take e.g. the absolute

value or the square of the original correlations. However in this way the negative correlations

are treated just like the positive ones, making it impossible for the output modules to encode

any information about the original sign of the functional dependencies. We instead believe

that the sign should be retained and used as a repulsive interaction in the definition of mod-

ules, with the understanding that the latter should not be interpreted as functionally indepen-

dent of each other, but rather as dependent sub-modules in mutual anticorrelation, possibly

nested within larger modules that may eventually be functionally unrelated.

Third, we want to avoid the ‘merging bias’ that affects even the few remaining methods that

do preserve the sign of correlations in the definition of modules [14, 25, 26]. These methods

are adaptations of the so-called ‘modularity maximization’ techniques introduced in the litera-

ture about community detection in networks and targeted at finding groups of nodes that are

more densely connected internally, and less densely connected across, than expected under a

random null model [23]. The main null models for networks have statistically independent

links, i.e. a link can be placed between any two nodes without affecting the probability of plac-

ing links elsewhere in the network. The methods that generalize these null models to correla-

tion matrices extend them in the direction of allowing links with both positive and negative

weight, but unfortunately retain the assumption of independent matrix entries [14, 25, 26].

While justified for networks, this assumption becomes incorrect for correlation matrices,

whose entries are subject to basic ‘metric’ properties that make them depend on each other

[15]. For instance, negative triangular relationships of the type Ci,j< 0, Cj,k< 0, Ck,i< 0 are in

general very rare in empirical correlation matrices (and become impossible if Ci,j = Cj,k =

Ck,i = −1), while they are much more likely in a null model with independent entries. This

effectively creates the systematic bias of erroneously interpreting the absence or scarcity of

such negative triangles in the data as strong statistical evidence for the nodes i, j and k being

‘attracted’ to each other. As a net result, the three nodes are likely to be merged in the same

module (hence the merging bias), although their mutual anticorrelation represents statistical

evidence that they should in fact belong to three separate modules.

Fourth, we want to avoid misidentification due to the presence of common trends across all

ROIs in the sample. Indeed, depending on the spatial and temporal resolution of the data,

experimental time series may contain a multitude of periodic or systematic trends at different

frequencies (e.g. heartbeat, breathing, circadian rhythms) that impart an overall positive corre-

lation to all or several ROIs, without actually representing any real functional relatedness

among the ROIs themselves. One of the side effects of such ‘global mode’ is a reduction of the

detectability of the underlying modular structure. Certain techniques aim at solving this prob-

lem by preliminary subtraction of the measured average trend from each time series separately

(thus effectively removing the global mode), and then calculating the resulting correlation

matrix. Along these lines, methods like Bazzi et al [27] proposed a null model in which the ele-

ments are correlated at some baseline level, where the amplitude of this level is determined by

a tunable parameter. These procedures have been criticized because they tend to generate both

positive and negative correlations by construction, with no guarantee that the corresponding

signs represent a true signature of functional modularity, e.g. even if the original time series

Uncovering functional signature in neural systems via random matrix theory
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were all independent and their increments relative to the average trend were merely due to

chance or noise.

Fifth, and connected to the point above, we want to accurately characterize the level of

noise in the data. This point is connected to many of the points above. For instance, being able

to separate noise from information would allow us to avoid the use of arbitrary thresholds, dis-

criminate between true and random modularity, and arrive at a safer definition of modules

based on trends relative to the global one, thus enhancing the detectability of functional

substructure.

A random matrix null model for correlation matrices of neural activity

We are now ready to introduce our method which is designed in order to avoid the limitations

described above.

Given an empirical correlation matrix constructed from multiple time series of neuronal

activity, our method looks for functional modules upon removing the joint effects of noise in

the data and of common temporal trends, as both features may obfuscate the empirical identi-

fication of possible underlying substructure. For this task the method first introduces a null

model that serves as a random benchmark, thus accurately highlighting the non-random mod-

ular patterns in the empirical correlation matrix. This improved null model, based on random

matrix theory, takes into account cell to cell variability and does not require the unrealistic

assumption that the time series are stationary. Therefore we can allow for any temporal modu-

lation (see section Materials and methods), both in individual time series and in their resulting

common trend. This is very important, given the strongly time-dependent nature of functional

brain data in general, and of our time-modulated oscillating signals in particular. So, even if

the calculation and interpretation of correlation matrices usually assumes stationarity, here we

can statistically treat correlation matrices calculated from nonstationary data as well.

The first step is an exact calculation of the combined, undesired effects of noise and com-

mon trends on the density of eigenvalues ρ(λ) of a theoretical cross-correlation matrix. This

step corresponds to the definition of a null model for a correlation matrix without modular

patterns, but with a noise level calibrated to the observed one and with a global trend that

exactly follows the one in the empirical time series. The output of this first step is illustrated in

Fig 2A. The density of eigenvalues, which is calculated exactly in the null model [see section

Fig 2. (A) Empirical eigenvalue density versus calculated eigenvalue density for the two random models. (B) The community

structure of the SCN as resolved by our method. On the left, is the community structure detected by random model without filtering

the global mode (Random). On the right, is the community structure detected by random model once the global mode is filtered

(Random + Global). In the bottom panels are the partitions detected, where each community is marked with a different colour. In

the top panels are the corresponding resolved filtered correlation matrices displaying the resolved structure as a block matrix.

https://doi.org/10.1371/journal.pcbi.1006934.g002
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Materials and methods], features one largest eigenvalue λmax due to the global trend, plus a

“random bulk” extending between a minimum (λ−) and a maximum (λ+) eigenvalue.

The second step is a filtering of the original correlation matrix via the identification of the

empirical eigenvalues that deviate, in a statistically significant manner, from the ones predicted

by the module-free null model. In practice, this reduces to the selection of the empirical eigen-

values that are found in the range (λ+, λmax). A crucial result in this study, overlooked in previ-

ous analyses [15], is a precise calculation of λ+ showing that the higher λmax, the lower λ+. The

fact that the values of λmax and λ+ depend on each other is a proof that noise and global trends

jointly affect the features of the expected eigenvalue density of the correlation matrix. Our cal-

culation of λ+ allows us to recover statistically significant features of the empirical correlation

matrix that would otherwise be incorrectly classified as noise. Looking again at Fig 2, we

indeed see the presence of eigenvalues in the empirical spectrum (red) that deviate from our

adjusted null model (green) and include eigenvalues that would be incorrectly classified as

noisy if λ+ were not corrected for λmax (blue). This step is completed by the selection of the

eigencomponent of the correlation matrix associated with the deviating eigenvalues. The

resulting, cleaned component of the original matrix contains statistically significant, noise-

and trend-filtered information about the presence of functional modules.

Detecting functional signature in neural systems

Once the original correlation matrix has been filtered by the null model, only the statistically

significant dependencies are guaranteed to remain in the matrix. At this point our aim is the

identification of functional modules that are positively correlated internally and negatively

correlated externally. This can be transformed into an optimization problem. We employ com-

munity-detection techniques that take the filtered correlation matrix as input and return the

optimized partition of the system into functional modules. The optimized partition will tend

to place the positive dependencies (correlation) inside the clusters while expelling the negative

dependencies (anti-correlation) across the clusters. We should stress that, by construction, the

emergent functional structure will be detectable only if it is statistically significant. Moreover,

the number of detected clusters is not defined a priori, and is found automatically by the

method itself.

It should be noted that, while the use of information contained in the eigenvectors of the

largest eigenvalues is common to other methods (such as Principal Component Analysis and it

generalization, aka Independent Component Analysis [28, 29]) as well, our approach distin-

guishes itself from these approaches in various respects. First, those methods look for the inde-
pendent components in which the orginal signal can be optimally decomposed, while our aim

is to pinpoint the anticorrelated groups of units. Second, our iterative optimization procedure

reformulated for correlation matrices guarantees that the final output is maximally contrasted

in terms of the signs of the detected modules. Finally, the other approaches focus on the stron-

gest eigenvalues but do not implement a null model, tailored to capture both local noise and

global trends, to assess which of the eigenvalues are informative and which are noisy. Indeed,

in ICA the desired number of components has to be specified by the user, whereas in our

method the optimal number of modules is given as output by the algorithm.

By using an appropriate null model that takes into account the presence of strong global

trends, our method avoids the misidentification due to common trends and merging bias of

other methods described above. To illustrate this, in Fig 3 we show a synthetic sample with 300

oscillating signals divided into 3 main groups, in each of which 100 signals are randomly

assigned different phases around a ‘master signal’ (top). We also consider the same exact sys-

tem with strong (periodic) global trend, which obscure the positive and negative correlations

Uncovering functional signature in neural systems via random matrix theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006934 May 1, 2019 8 / 20

https://doi.org/10.1371/journal.pcbi.1006934


(bottom). We can clearly see that due to the differences in phase between the groups, the rela-

tions between different groups become negative (anti-correlation) in sample one (top), how-

ever, in the system with the global trend all of the correlations are shifted to positive values

(bottom). We then process the correlation matrix with the (independent-entries) method pro-

posed in [14] and with our method. While our method is able to cluster the 3 groups perfectly

in both cases, the general modularity method clusters the modules correctly only in simple

case where no global trends are present.

Uncovering the hidden functional signature of the SCN

The brain region we apply our method to is the suprachiasmatic nucleus (SCN), located in the

hypothalamus in the brain, and recognized as the site of the central circadian clock in mam-

mals. This clock is important for the regulation of our daily and seasonal rhythms. It has been

shown that the neuronal network organization of the SCN changes in different photoperiods

[30], however, the mechanisms behind these changes are still elusive. Furthermore, only a sub-

set of neurons within the SCN network are directly responsive to light [31], which poses the

question how encoding for seasonally changing day length is achieved in the SCN network.

The SCN is a prototypical example of a brain structure for which resolving functional organi-

zation is challenging for the reasons outlined above: it consists of about 20000 neurons that are

spatially close (total size of 1mm3—so, structurally speaking, these neurons form a single

densely connected cluster, whose only anatomical substructure is a left-right split into two

lobes) while at the same time displaying a high variability in terms of the signals of the constit-

uent neurons.

Fig 3. Illustration of misidentification due to the presence of common trends in a comparison between the method by Rubinov

and Sporns [14] (based on a null model with independent entries of the correlation matrix) and our alternative approach

(based on the more appropriate null model with dependent entries constructed from random matrix theory). (A top) 300

synthetically generated time series in a system with 3 modules, each containing 100 oscillating series with random phases, (A

bottom) 300 synthetically generated time series as before, with a strong global periodic signal. (B) the corresponding correlation

matrix, top and bottom accordingly, showing a clear block structure. The output of our method (C) and the Rubinov-Sporns

method (D) in terms of likelihood matrices indicating the frequency with which two neurons are found in the same community in

1000 runs of both methods. We can see that the Rubinov-Sporns method is able to correctly separates the 3 modules in the more

straightforward case of clear positive and negative correlation (D top). In the more complex case where the correlation are obscured

by a strong common trend the Rubinov-Sporns method merges the first module with the other two clusters. Using the proper null

model our method is able to correctly separates the 3 modules in both cases (C).

https://doi.org/10.1371/journal.pcbi.1006934.g003
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Currently, brain networks are most often derived from data acquisition techniques that do

not have the possibility to perform recordings at the single cell level. Techniques such as (func-

tional) Magnetic Resonance Imaging ((f)MRI), Electroencephalography (EEG) or Magnetoen-

cephalography (MEG) use brain regions as nodes in the network and statistical associations of

regional/sensor temporal activity as edges. We investigate the SCN network at the micro-scale

where nodes are single cells and edges are functional connections between the cells. We use

single-neuron data on gene expression of a clock gene period2 in the SCN. The data were sam-

pled every hour for at least three days by means of a bioluminescence reporter PER2::LUC.

We first perform a standard analysis based on the mainstream method [see Fig 1] for

detecting communities via functional networks. This is a useful reference as a comparison

with our own method. In Fig 4 we present the community structure, resolved by the standard

method, for different thresholds. In blue are the nodes that belong to the large cluster, while in

gray are isolated nodes (communities that only contain one node). In the right panel, we plot

the fraction of nodes in the largest connected component S ¼ LCC
N in blue, and the fraction of

communities detectedM ¼ Communities
N in red. It is evident that applying different thresholds

essentially detaches isolated nodes from the large cluster, and there is no optimal value for the

threshold. Therefore, the standard method can only observe a “radial gradient” of connectivity,

and there is no sense of multiple communities of neurons, which is one of the signatures of

functional as opposed to structural connectivity. This poor performance of the method is a

known limitation when applied to very dense networks.

Our method detects mostly two communities which coincide with the core and shell dis-

tinction within the SCN [17]. The core of the SCN receives light input and adjusts quickly to

changing light schemes, while the shell of the SCN lags behind [32]. Mostly the core-shell dis-

tinction of the SCN is interpreted as a distinction between the ventrolateral and the dorsome-

dial part of the SCN, which is predominantly based on anatomical data [33]. In this study the

two clusters that were found were more dorsolaterally and ventromedially located, and while it

is based on functional data this may differ from known anatomical distinctions. Furthermore,

the SCN is much more heterogeneous when looked at cellular phenotype or gene expression

[6, 34]. The anatomical loci do not necessarily delineate the phenotypical SCN regions very

precisely, which implies that functionally, the core-shell distinction is less clearly defined and

may differ from the described anatomical division (see also [17]).

Next, we perform the analysis using the method presented in Rubinov& Sporns(2011) [14],

which uses a modified modularity matrix to incorporate signed matrices. Since the method

does not require a threshold parameter and using all the data entries in the correlation matrix

to resolve the community structure, we anticipate a better performance than the standard

threshold procedure. In Fig 5 we plot the community structure of four different samples

Fig 4. The community structure of the SCN as resolved by a standard threshold approach. On the left, we plot the community

structure, resolved by the standard method, for different thresholds. In blue are the nodes that belong to the large cluster, while in

gray are isolated nodes (’communities’ that only contain one node). In the right panel, we plot the fraction of nodes in the largest

connected component S in blue, and the fraction of communities detectedM in red.

https://doi.org/10.1371/journal.pcbi.1006934.g004
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(A,B,C,D) as resolved by the two methods. The panels represents the partitions detected,

where each community is marked with a different colour. Strikingly, the signed Leuven

method community structure is very comparable to the clear core periphery structure that is

detected with the random matrix approach. However, it also detects with high consistency

three communities, when the third community is changing in size and location for each sam-

ple. The differences in the structures might result from the improve ability of the random

matrix approach to filter common trends, as seen in Fig 3. Nevertheless, the presence of the

general core periphery pattern is reinforced by both of the methods.

Regional analysis of the SCN using functional time series has been performed by other

groups. Evans and co-workers used a similar approach to identify single-cell-like regions of

interest, but did not use clustering algorithms and chose the regions by hand [35]. Silver and

co-workers also used regions of interest, called superpixels, but these were not necessarily

identified as single-cells. Based on these superpixels they used threshold methods to identify

regional differences in the SCN [36, 37]. Abel and co-workers applied a threshold method

based on mutual information on single-cell-like regions of interest [38]. These approaches

encounter similar problems as described in this paper when using the threshold method: they

only find one cluster (in the core, or ventral part) and many non-clustered cell-like ROIs (in

the shell or dorsal part). Our results presented here are in line with the regional division of the

SCN proposed in these studies, but we were able to identify both the core and shell clusters. To

visualize the general community structure we plot the bioluminescence image of one SCN

sample with the resolved average partition average partition over all the samples (Fig 6A and

6B). We also plot the average signal of each community to observe the optimized anti-correla-

tion pattern (Fig 6C and 6D), which corresponds to the functional signature of the SCN.

Furthermore, our approach is able to identify the two clusters in different experimental condi-

tions, ranging from summer conditions (long days, short nights: LD 16h:8h) to winter condi-

tions (short days, long nights: LD 8h:16h). On the contrary, Evans and co-workers identified

changes occuring in the organization of the SCN, where the two regions similar to our clusters

were found, only for very long day conditions (LD 20h:4h) [39].

As a next step we analyzed the values in the functional signatures and compared those

between different photoperiods that the animals have been subjected to. With this step we

Fig 5. The community structure of the SCN for 4 different samples (A,B,C,D) as resolved by our method (top) and by the

Rubinov and Sporns [14] approach. The panels represents the partitions detected, where each community is marked with a

different colour. We can see that the Rubinov Sporns method shares a good resemblance to the clear core periphery structure that is

detected by our method. In contrast to the random matrix approach, the signed Leuven consistently detects a third module, in a

different location at each time.

https://doi.org/10.1371/journal.pcbi.1006934.g005
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reveal the dynamics within the population of neurons in the clusters and between the clusters.

As the cluster-partition is based on the functional signature, we will now investigate the values

within and between the clusters, exploring the inner and outer level of correlation. This extra

information links physiological properties of the SCN to the functional signature found in the

data. We measure the average residual correlation within each cluster detected by our method

and we plot the community distribution of the measured values (Fig 7A and 7B). We then

identify the cumulative probabilty of the values in the clusters and we see that in short photo-

periods the average values are much higher than in long photoperiods (Fig 7C). This means

that the correlation within the clusters is significantly higher in short photoperiods than in

long photoperiods. When we examine the values between the clusters, we see that the average

value is lower in short versus long photoperiod, meaning that the clusters are less correlated in

short phtoperiods (Fig 7D). These results connect directly to previous results in physiological

properties as described in [7] and is supported in other papers [30, 40]. Thus, we show that the

hidden functional representation reveals the phase ordering of oscillating cell populations

caused by physiological properties of the SCN.

Discussion

Our method reveals hidden functional dependencies that are obfuscated by the presence of a

global mode in the neuronal gene expression, which imparts an overall positive correlation.

This problem becomes particularly evident when searching for functional structure in neuro-

nal systems where the global signal is very strong, making the identification of functional mod-

ules very challenging. Our method is able to deal with the effects of noise and common global

Fig 6. (A) The bioluminescence image of one SCN sample. (B) The plotted average partition over all the samples. (C) The plotted

average signal of the whole system (in black) versus the mean signals of the two detected communities (in red and blue) for one SCN

sample. (D) The plotted average residual signals of the two communities of one SCN sample, once the global signal is subtracted.

https://doi.org/10.1371/journal.pcbi.1006934.g006
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trends in the original data in a robust manner. In fact, we have shown that the effects of noise

and those of the global signal are coupled, as their signatures in the spectrum of the correlation

matrix depend on each other.

We found a distinctive left-right functional symmetry with core-shell features in the SCN.

This structure reveals non-contiguous regions that display strongly synchronized activity,

despite being at a relatively large distance from each other, similar to [4]. Remarkably, here we

detect this functional symmetry on a micro-scale level where nodes are single cells. In this

respect, it is important to notice that while the traditional threshold method applied to the

SCN resolves only a radial gradient of functional connectivity that closely mirrors the anatomi-

cal proximity of neurons without singling out any modularity or boundary, our method sys-

tematically reveals two sharp modules, a ventral core and a dorsal periphery. These modules

feature distinct signatures of functional (as opposed to structural) connectivity, namely left-

right symmetry, spatial non-contiguity, and almost perfect dynamical anti-correlation once

the global SCN-wide signal is filtered out. The left and right shell regions of the SCN, despite

being spatially disconnected into two non-contiguous regions, are functionally joined into a

single module. These symmetrical structures in the SCN raise important questions with respect

to the mechanism in the system, and can possibly be explored in the future.

The ability to exploit all the information from the correlation matrix, i.e. both the negative

and the positive dependencies (correlation and anti-correlation), in order to detect the func-

tional modules is very powerful. The strength of our method is to detect communal phase dif-

ferences in neuronal networks by analysing time series data without using any presumptions

or threshold definitions. Phase differences and phase adjustments in neuronal networks are an

key feature for physiological function and can be used to define the functional state of a net-

work in health and disease. Our method allows the identification of synchronized clusters of

Fig 7. (A) The resolved functional signature and modules structure of a long photoperiod (LP, L16D8) sample. (B) The resolved

functional signature and modules structure of a short photoperiod (SP, L8D16). (C) Cluster analysis: plotting the cumulative

distribution of the dependencies within the two detected clusters, comparing the two different photoperiods. The upper graph shows

cluster 1 and the lower graph cluster 2. C represents the measured averaged correlation of a cluster, and d �
N�
Nþ

is defined as the

contrast ratio of a cluster, measuring the ratio of negative dependencies versus positive dependencies. (D) Inter-cluster analysis:

plotting the cumulative distribution of the external dependencies between the two detected clusters, comparing the two different

photoperiods. C represents the measured averaged anti-correlation between clusters, and d �
Nþ
N�

is defined as the contrast ratio of a

cluster, measuring the ratio of positive dependencies versus negative dependencies.

https://doi.org/10.1371/journal.pcbi.1006934.g007
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cells. Synchronization within a neuronal network was suggested to play a major role in the

occurrence of epilepsy [41, 42], Parkinsons disease [43, 44] and schizophrenia [45, 46]. It is

noteworthy that the clusters determined with our methods are not influenced by the functional

change in E-I balance occurring in different photoperiods. This is advantegous since our anal-

ysis will also detect functional clusters within neuronal networks with altered E/I balance often

found in neurological disease (e.g. epilepsy, RETT, FragileX, autism) and in the aging brain.

The results presented here show that our method offers great potential for detecting hidden

functional synchronization and desynchronization in brain networks and are not limited to

gene expression rhythms. Time series from other modalities, such as electrical action potential

recordings, EEG recordings and fMRI recordings can also be interpreted through this new

method. As such, the method may offer diagnostic or pre-diagnostic applications in medical

health care.

Materials and methods

Ethics statement

The experiments were performed in accordance to the Dutch law on Animal welfare and

approved by the Dutch government (DEC 11010).

Bioluminescence imaging

Experimental methods and results are treated in our accompanying paper [7]. Briefly, male

homozygous PER2::LUCIFERASE knock-in mice [47] were bred in the animal facility of the

Leiden University Medical Center (LUMC). The animals were entrained to different photope-

riods, being either summer days with 16 hours of light and 8 hours of darkness (LD 16h:8h) or

to winter days with 8 hours of light and 16 hours of darkness (LD 8h:16h). The mice were

entrained for at least 28 days to their respective photoperiod. Animals were sacrificed within

two hours before lights off, since dissection during that period is found to least affect the SCN

rhythm [48, 49].

Organotypic cultures of the SCN were prepared as described previously [7]. In brief, mice

were truncated and the brain immediately dissected and placed in ice cold, low Ca2+ and high

Mg2+ artificial cerebrospinal fluid (ACSF), containing (in mM): NaCl (116.4), KCl (5.4),

NaH2PO4 (1.0), MgSO4 (0.8), CaCl2 (1.0), MgCl2 (4.0), NaHCO3 (23.8), D-glucose (16.7) and

5 mg/L gentamicin (Sigma Aldrich) saturated with 95% O2—5% CO2 (pH 7.4). From each ani-

mal, the hypothalamus containing the SCN was cut in 200 μm thick slices, using a VT 1000S

vibrating microtome (Leica). From two consecutive coronal slices (the SCN was isolated and

placed on a Millicell membrane insert (PICMORG50, Millipore). Membrane inserts were

placed in a 35 mm dish, which contained 1.2 mL of Dulbecco’s Modified Eagles Medium

(D7777, Sigma-Aldrich) supplemented with 10 mM HEPES-buffer (Sigma-Aldrich), 2% B-27

(Gibco), 5 U/ml penicillin and 5 μg/ml streptomycin (0.1% penicillin-streptomycin, Sigma-

Aldrich) and 0.2 mM D-luciferine—sodium salt (Promega), adjusted to pH 7.2 with NaOH.

The dish was sealed with vacuum grease (details) and a 40 mm coverslip.

The dish containing the cultured SCN tissue were immediately transferred to a light tight

and temperature controlled chamber, kept at 37 ˚C (Life Imaging Services, Reinach, Switzer-

land). The chamber was equipped with an upright microscope (BX51WIF, Olympus) with a

long-working distance objective (HN10X/22, Olympus) and a cooled CCD camera (ORCA –

UU-BT-1024, Hamamatsu). The bioluminescence images were obtained from two SCN cul-

tures per experiment, with an exposure times of 29 min, resulting in one image per hour. Stage

and focus position, as well as image acquisition was controlled by Image Pro Plus software

(MediaCybernetics, Warrendale PA USA; StagePro plug-in, Objective Imaging, Cambridge,
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UK), driving a motorized stage (XY-shifting table 240, Luigs & Neumann Ratingen, Germany)

and a focus control (MA-42Z, Märzhäuser, Wetzlar, Germany) both connected to an OASIS-

4i Four Axis Controller.

Data processing

A MATLAB-based (Mathworks, Natick, MA) custom-made program was used to analyze the

images. An automated detection procedure identified cell-like regions of interest (ROIs) con-

sisting of groups of pixels with luminescence intensity above the noise level. The time series

from the cell-like ROIs were smoothed and the data was resampled to one data point per min-

ute to reduce noise and increase the efficiency for subsequent analyses [50]. The cell-like ROIs

were evaluated on consistency of location throughout the recording, and the smoothed signals

on sustained PER2::LUC signal and circadian rhythmicity. All single cells had a minimum of

three consecutive cycles, where the average peak interval was in the circadian range (20-28h).

Both raw data as well as smoothed data were tested using the mathematical method

described in this paper, which did not yield significantly different results.

Modularity for correlation matrix

We describe the redefined modularity for correlation matrices [15]. Let us consider a system

with N cells. One can introduce a number of partitions of the N cells into non-overlapping

sets. The different partitions will be represented by an N-dimensional vector~s where the i-th

component σi denotes the set in which cell i is placed by that particular partition. Now, we

introduce the modularity measure Qð~σÞ which indicates the quality of a particular choice of

partition~s measured by a high degree of inter-community connectivity and a low degree of

intra-community connectivity. So-called modularity optimization algorithms look for the spe-

cific partition that maximizes the value of Qð~σÞ, the objective function. The latter is defined as

Qð~σÞ ¼
1

Cnorm

X

i;j
Cij � hCiji
h i

dðsi; sjÞ ð1Þ

where hCiji is a null model that needs to identify the random properties of empirical correla-

tion matrices.

In this approach, the empirical correlation matrix is first decomposed and then recon-

structed using only the eigenvalues (and eigenvectors) that are not reproduced by the random

null model. Once compared with the observed spectrum of the empirical correlation matrix,

the model will identify the non-random eigenvalues (by elimination). The non-random eigen-

values will be later used to generate the new filtered matrix.

Null model for neural system

Here we proceed to the exact calculation of the null model, that will be used as a random

benchmark in the modularity. The aim is to calculate the the density of eigenvalues ρ(λ) of a

theoretical cross-correlation matrix, however, here we look at a special case of a random sys-

tem with common trends. As a crucial difference with respect to a similar method introduced

in [15], we do not require the unrealistic assumption that the time series are stationary. There-

fore we can allow for any temporal modulation (see Fig 8), both in individual time series and

in their resulting common trend [see section Materials and methods]. This is very important,

given the strongly time-dependent nature of functional brain data in general, and of our time-

modulated oscillating signals in particular. So, even if the calculation and interpretation of
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correlation matrices usually assumes stationarity, here we can statistically treat correlation

matrices calculated from nonstationary data as well.

A second and related improvement takes into account the effects of common (nonstation-

ary) trends for a system with N cells, and in particular the largest eigenvalue λmax. We realize

that the effects of noise are inseparably coupled to those of the global trend [51], as the pres-

ence of the latter modifies and left-shifts the density of eigenvalues that we would otherwise

observe in presence of noise only. So we do not simply superimpose the two effects as in [15];

on the contrary, we calculate the modification of the random bulk exactly, given the system’s

empirical λmax. In particular, we calculate the shifted value of an original Wishart matrix [15]

to find

l� ¼ 1 �
lmax
N

� �

1�
1
ffiffiffiffi
Q
p

� �2

ð2Þ

where Q = T/N is the ratio between the number of time steps in the data T and the number of

cells N. Fig 2 shows both the modified and unmodified spectral densities. It also shows that

taking the left-shift of the random bulk into account is very important, as it unveils informative

empirical eigenvalues that would otherwise be classified as consistent with the random spec-

trum and hence discarded.

Fig 8. Temporal modulation. Different temporal modulation in the data result in an identical correlation matrix. A comparison

between the empirical data and reorganized versions of the empirical data, highlighting the influence of a presence of a global trend

on a correlation matrix. We show that by construction a Pearson correlation matrix can not differentiate between the dynamics of

the global trend. Hence, the effects of different (dynamics of) global modes can be filtered at the level of the correlation matrix.

https://doi.org/10.1371/journal.pcbi.1006934.g008
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Community detection algorithm

We employ a popular community-detection technique that take the filtered correlation matrix

as input and return the best partition of the system into functional modules [23, 52]. In this

set-up the algorithm is clustering positive dependencies within the clusters and expelling nega-

tive dependencies outside. The optimized partition, which maximizes the modularity Eq 1, is

considered the binary signature of the system.

We should stress that while standard community-detection methods are based on null

models that are justified only for networks, but not for time series, our method builds on the

appropriate null model described above and calculated exactly in the first step.

The use of a correct null model allows for a recursive analysis of specific time series in the

data, i.e. analyze different hierarchical levels of the community structure. Here, unlike in the

analysis of a network topology, further analyzing the communities for the detection of sub-

clusters is not acting on missing information (ignoring inter-clusters links). We take the

original time series of each cluster and construct a new correlation matrix, this matrix will

then be filtered and analyzed with the same approach. In Fig 9 we present an hierarchical

community structure of an SCN sample as resolved by our method. In this study we only

explore the first partition, since the data contains a limited number of cells, which makes the

next partitions unreliable. However, this feature marks a great potential for future data sets

and studies.

Acknowledgments

We thank Carlo Nicolini for stimulating discussions and for making a code implementing our

method public available. We thank Dr. Gabriella Lundkvist, Swedish Medical Nanoscience

Center, Department of Neuroscience, Karolinska Institutet, for providing the PER2::LUC

mice. We thank Dr. Henk-Tjebbe van der Leest and Trudy van Kempen for their contribution

to the development of the bioluminescence imaging technique and analysis.

Fig 9. The hierarchical community structure of the SCN as resolved by our method. The community structure detected by

different recursive runs of the method (A,B,C,D). In the bottom panels are the partitions detected, where each community is marked

with a different colour. In the top panels are the corresponding resolved filtered correlation matrices (for each run) displaying the

resolved structure as a block matrix.

https://doi.org/10.1371/journal.pcbi.1006934.g009

Uncovering functional signature in neural systems via random matrix theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006934 May 1, 2019 17 / 20

https://doi.org/10.1371/journal.pcbi.1006934.g009
https://doi.org/10.1371/journal.pcbi.1006934


Author Contributions

Conceptualization: Stephan Michel, Johanna H. Meijer, Diego Garlaschelli.

Data curation: M. Renate Buijink, Ori Roethler.

Formal analysis: Assaf Almog.

Investigation: Jos H. T. Rohling.

Methodology: Assaf Almog, Diego Garlaschelli.

Software: Assaf Almog.

Writing – original draft: Assaf Almog, Jos H. T. Rohling.

Writing – review & editing: Stephan Michel, Diego Garlaschelli.

References
1. Meunier D., Lambiotte R., and Bullmore E.T. Modular and Hierarchically Modular Organization of Brain

Networks Front Neurosci, 4: 200 (2010). https://doi.org/10.3389/fnins.2010.00200 PMID: 21151783

2. Park H. & Friston K. Structural and Functional Brain Networks: From Connections to Cognition, Science

342 (6158), 1238411 (2013). https://doi.org/10.1126/science.1238411 PMID: 24179229

3. Corballis M. C. Left brain, right brain: facts and fantasies, PLoS biology 12(1), e1001767 (2014). https://

doi.org/10.1371/journal.pbio.1001767 PMID: 24465175

4. Nicosia V.et al. Remote Synchronization Reveals Network Symmetries and Functional Modules, Phys.

Rev. Lett. 110, 174102 (2013). https://doi.org/10.1103/PhysRevLett.110.174102 PMID: 23679731

5. Michel S.et al. Mechanism of bilateral communication in the suprachiasmatic nucleus, Eur J Neurosci,

37(6):964–71 (2013). https://doi.org/10.1111/ejn.12109 PMID: 23311402

6. Antle M. C. & Silver R. Orchestrating time: arrangements of the brain circadian clock, Trends in Neuro-

sciences, 28,3, 145–151 (2005). https://doi.org/10.1016/j.tins.2005.01.003 PMID: 15749168

7. Buijink R.et al. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under

Long Photoperiod, PLoS ONE 11: 12. e0168954 (2016). https://doi.org/10.1371/journal.pone.0168954

PMID: 28006027

8. De la Iglesia H.O. Meyer J. Carpino A, Schwartz W.J. Antiphase oscillation of the left and right suprachi-

asmatic nuclei, Science, 290:799–801 (2000). https://doi.org/10.1126/science.290.5492.799 PMID:

11052942

9. Ohta H.Yamazaki S.McMahon D.G. Constant light desynchronizes mammalian clock neurons, Nat

Neurosci, 8(3):267–9 (2005). https://doi.org/10.1038/nn1395 PMID: 15746913

10. Myung J.et al. GABA-mediated repulsive coupling between circadian clock neurons in the SCN

encodes seasonal time, Proc Natl Acad Sci, 112(29):E3920–9 (2015). https://doi.org/10.1073/pnas.

1421200112 PMID: 26130804

11. DeWoskin D.et al. Distinct roles for GABA across multiple timescales in mammalian circadian timekeep-

ing, Proc Natl Acad Sci, 112(29):E3911–9 (2015). https://doi.org/10.1073/pnas.1420753112 PMID:

26130805

12. Farajnia S.et al. Seasonal induction of GABAergic excitation in the central mammalian clock, Proc Natl

Acad Sci, 111(26):9627–32 (2014). https://doi.org/10.1073/pnas.1319820111 PMID: 24979761

13. Bullmore E. & Sporns o. Complex brain networks: graph theoretical analysis of structural and functional

systems, Nature Reviews Neuroscience, vol. 10, pp. 186–198 (2009). https://doi.org/10.1038/nrn2575

14. Rubinov M. & Sporns O. Weight-conserving characterization of complex functional brain networks, Neu-

roImage 56, 2068–2079, (2011). https://doi.org/10.1016/j.neuroimage.2011.03.069 PMID: 21459148

15. MacMahon M. & Garlaschelli D. Community detection for correlation matrices, Physical Review X 5,

021006 (2015). https://doi.org/10.1103/PhysRevX.5.021006

16. Almog A.Besamusca F.MacMahon M.Garlaschelli D.Mesoscopic Community Structure of Financial

Markets Revealed by Price and Sign Fluctuations, PLoS ONE 10 7. e0133679, (2015). https://doi.org/

10.1371/journal.pone.0133679 PMID: 26226226

17. Morin L.P. Shivers K.Y. Blanchard J.H. Muscat L. Complex organization of mouse and rat suprachias-

matic nucleus, Neuroscience, (4):1285–97 (2006). https://doi.org/10.1016/j.neuroscience.2005.10.030

PMID: 16338081

Uncovering functional signature in neural systems via random matrix theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006934 May 1, 2019 18 / 20

https://doi.org/10.3389/fnins.2010.00200
http://www.ncbi.nlm.nih.gov/pubmed/21151783
https://doi.org/10.1126/science.1238411
http://www.ncbi.nlm.nih.gov/pubmed/24179229
https://doi.org/10.1371/journal.pbio.1001767
https://doi.org/10.1371/journal.pbio.1001767
http://www.ncbi.nlm.nih.gov/pubmed/24465175
https://doi.org/10.1103/PhysRevLett.110.174102
http://www.ncbi.nlm.nih.gov/pubmed/23679731
https://doi.org/10.1111/ejn.12109
http://www.ncbi.nlm.nih.gov/pubmed/23311402
https://doi.org/10.1016/j.tins.2005.01.003
http://www.ncbi.nlm.nih.gov/pubmed/15749168
https://doi.org/10.1371/journal.pone.0168954
http://www.ncbi.nlm.nih.gov/pubmed/28006027
https://doi.org/10.1126/science.290.5492.799
http://www.ncbi.nlm.nih.gov/pubmed/11052942
https://doi.org/10.1038/nn1395
http://www.ncbi.nlm.nih.gov/pubmed/15746913
https://doi.org/10.1073/pnas.1421200112
https://doi.org/10.1073/pnas.1421200112
http://www.ncbi.nlm.nih.gov/pubmed/26130804
https://doi.org/10.1073/pnas.1420753112
http://www.ncbi.nlm.nih.gov/pubmed/26130805
https://doi.org/10.1073/pnas.1319820111
http://www.ncbi.nlm.nih.gov/pubmed/24979761
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.neuroimage.2011.03.069
http://www.ncbi.nlm.nih.gov/pubmed/21459148
https://doi.org/10.1103/PhysRevX.5.021006
https://doi.org/10.1371/journal.pone.0133679
https://doi.org/10.1371/journal.pone.0133679
http://www.ncbi.nlm.nih.gov/pubmed/26226226
https://doi.org/10.1016/j.neuroscience.2005.10.030
http://www.ncbi.nlm.nih.gov/pubmed/16338081
https://doi.org/10.1371/journal.pcbi.1006934


18. Power J. D., et al. Functional network organization of the human brain Neuron 72(4): 665–678 (2011).

https://doi.org/10.1016/j.neuron.2011.09.006 PMID: 22099467

19. Rubinov M. & Sporns O. Complex network measures of brain connectivity: uses and interpretations,

Neuroimage, 52(3):1059–69 (2010). https://doi.org/10.1016/j.neuroimage.2009.10.003 PMID:

19819337

20. Palla G., Derenyi I., Farkas I., and Vicsek T. Uncovering the overlapping community structure of com-

plex networks in nature and society Nature, vol. 435, no. 7043, pp. 814–818 (2005). https://doi.org/10.

1038/nature03607

21. Colizza V., Flammini A., Serrano M. A. and Vespignani A. Detecting rich-club ordering in complex net-

works Nat Phys, 2, 110–115 (2006). https://doi.org/10.1038/nphys209

22. Seidman S.B. Network structure and minimum degree Social Networks, 5(3):269–287 (1983). https://

doi.org/10.1016/0378-8733(83)90028-X

23. Fortunato S.Community detection in graphsPhysics Reports 486, 75–174 (2010). https://doi.org/10.

1016/j.physrep.2009.11.002

24. Garrison K.A. Scheinost D. Finn E.S. Shen X. Constable R.T. The (in)stability of functional brain net-

work measures across thresholds. Neuroimage, 118:651–61 (2015). https://doi.org/10.1016/j.

neuroimage.2015.05.046 PMID: 26021218

25. Traag V.A., Bruggeman J. Community detection in networks with positive and negative links Physical

Review E 80 (3), 036115 (2009). https://doi.org/10.1103/PhysRevE.80.036115

26. Domenico N. D., Sasai S., and Arenas A. Mapping multiplex hubs in human functional brain network

Front. Neurosci. 10, 326 (2016).

27. M. Bazzi, L. G. S. Jeub, A. Arenas, S. D. Howison, and M. A. Porter, Generative Model for Mesoscale

Structure in Multilayer Networks, arXiv 1608.06196, 2016.

28. Brown G. D. Yamada S. and Sejnowski T. J. Independent component analysis at the neural cocktail

party, Trends in Neurosciences 24, 54–63 (2001). https://doi.org/10.1016/S0166-2236(00)01683-0

PMID: 11163888

29. Stone J. V. Independent component analysis: an introduction, Trends in Cognitive Sciences 6, 59–64

(2002). https://doi.org/10.1016/S1364-6613(00)01813-1 PMID: 15866182

30. VanderLeest H.T., et al. Seasonal Encoding by the Circadian Pacemaker of the SCN, Current Biology,

17, Issue 5, 468–473 (2007). https://doi.org/10.1016/j.cub.2007.01.048 PMID: 17320387

31. Rohling J.H.T., vanderLeest H.T., Michel S., Vansteensel M.J., Meijer J.H. Phase resetting of the mam-

malian circadian clock relies on a rapid shift of a small population of pacemaker neurons, PLoS ONE 6,

2011, e25437. https://doi.org/10.1371/journal.pone.0025437 PMID: 21966529

32. Albus H., Vansteensel M.J., Michel S., Block G.D., Meijer J.H. A GABAergic mechanism is necessary

for coupling dissociable ventral and dorsal regional oscillators within the circadian clock, Curr Biol,

10:886–93 (2005). https://doi.org/10.1016/j.cub.2005.03.051

33. Moore R.Y. Entrainment pathways and the functional organization of the circadian system., Prog Brain

Res, 111:103–19 (1996). https://doi.org/10.1016/S0079-6123(08)60403-3 PMID: 8990910

34. Butler M.P. & Silver R. Basis of robustness and resilience in the suprachiasmatic nucleus: individual

neurons form nodes in circuits that cycle daily, J Biol Rhythms, 24(5):340–52 (2009). https://doi.org/10.

1177/0748730409344800 PMID: 19755580

35. Evans J.A., Leise T.L., Castanon-Cervantes O., Davidson A.J. Intrinsic regulation of spatiotemporal

organization within the suprachiasmatic nucleus, PLoS One, 6(1):e15869 (2011). https://doi.org/10.

1371/journal.pone.0015869 PMID: 21249213

36. Foley N.C., Tong T.Y., Foley D., Lesauter J., Welsh D.K., Silver R. Characterization of orderly spatio-

temporal patterns of clock gene activation in mammalian suprachiasmatic nucleus Eur J Neurosci,

33(10):1851–65 (2011). https://doi.org/10.1111/j.1460-9568.2011.07682.x PMID: 21488990

37. Pauls S., et al. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and

temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null

and vasoactive intestinal peptide receptor 2-null mutant mice Eur J Neurosci, 40(3):2528–40 (2014).

https://doi.org/10.1111/ejn.12631 PMID: 24891292

38. Abel J. H., et al. Functional network inference of the suprachiasmatic nucleus, Proc Natl Acad Sci, 16,

vol. 113, 4512–4517, (2016). https://doi.org/10.1073/pnas.1521178113

39. Evans J.A., Leise T.L., Castanon-Cervantes O., Davidson A.J. Dynamic interactions mediated by non-

redundant signaling mechanisms couple circadian clock neurons, Neuron, 20; 80(4):973–83 (2013).

https://doi.org/10.1016/j.neuron.2013.08.022 PMID: 24267653

40. Rohling J., Meijer J.H., VanderLeest H.T., Admiraal J. Phase differences between SCN neurons and

their role in photoperiodic encoding; a simulation of ensemble patterns using recorded single unit

Uncovering functional signature in neural systems via random matrix theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006934 May 1, 2019 19 / 20

https://doi.org/10.1016/j.neuron.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22099467
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nphys209
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.neuroimage.2015.05.046
https://doi.org/10.1016/j.neuroimage.2015.05.046
http://www.ncbi.nlm.nih.gov/pubmed/26021218
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1016/S0166-2236(00)01683-0
http://www.ncbi.nlm.nih.gov/pubmed/11163888
https://doi.org/10.1016/S1364-6613(00)01813-1
http://www.ncbi.nlm.nih.gov/pubmed/15866182
https://doi.org/10.1016/j.cub.2007.01.048
http://www.ncbi.nlm.nih.gov/pubmed/17320387
https://doi.org/10.1371/journal.pone.0025437
http://www.ncbi.nlm.nih.gov/pubmed/21966529
https://doi.org/10.1016/j.cub.2005.03.051
https://doi.org/10.1016/S0079-6123(08)60403-3
http://www.ncbi.nlm.nih.gov/pubmed/8990910
https://doi.org/10.1177/0748730409344800
https://doi.org/10.1177/0748730409344800
http://www.ncbi.nlm.nih.gov/pubmed/19755580
https://doi.org/10.1371/journal.pone.0015869
https://doi.org/10.1371/journal.pone.0015869
http://www.ncbi.nlm.nih.gov/pubmed/21249213
https://doi.org/10.1111/j.1460-9568.2011.07682.x
http://www.ncbi.nlm.nih.gov/pubmed/21488990
https://doi.org/10.1111/ejn.12631
http://www.ncbi.nlm.nih.gov/pubmed/24891292
https://doi.org/10.1073/pnas.1521178113
https://doi.org/10.1016/j.neuron.2013.08.022
http://www.ncbi.nlm.nih.gov/pubmed/24267653
https://doi.org/10.1371/journal.pcbi.1006934


electrical activity patterns, J Physiol Paris, 100(5-6):261–70 (2006). https://doi.org/10.1016/j.

jphysparis.2007.05.005 PMID: 17628455

41. Jiruska P.et al. High-frequency network activity, global increase in neuronal activity, and synchrony

expansion precede epileptic seizures in vitro, J Neurosci, 21; 30(16):5690–701 (2010). https://doi.org/

10.1523/JNEUROSCI.0535-10.2010 PMID: 20410121

42. Jiruska P., de Curtis M., Jefferys J.G., Schevon C.A., Schiff S.J., Schindler K. Synchronization and

desynchronization in epilepsy: controversies and hypotheses, J Physiol, 15; 591(4):787–97 (2012).

https://doi.org/10.1113/jphysiol.2012.239590 PMID: 23184516

43. Lipski W.J., et al. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical

oscillations during movement, J Neurophysiol, jn.00964.2016 (2016).

44. Babiloni C.et al. Abnormalities of cortical neural synchronization mechanisms in patients with dementia

due to Alzheimer’s and Lewy body diseases: an EEG study, Neurobiol Aging, 55:143–158 (2017).

https://doi.org/10.1016/j.neurobiolaging.2017.03.030 PMID: 28454845

45. Uhlhaas P.J. & Singer W. Abnormal neural oscillations and synchrony in schizophrenia, Nat Rev Neu-

rosci, 11(2):100–13 (2010). https://doi.org/10.1038/nrn2774 PMID: 20087360

46. Uhlhaas P.J. & Singer W. Oscillations and neuronal dynamics in schizophrenia: the search for basic

symptoms and translational opportunities, Biol Psychiatry, 15; 77(12):1001–9 (2015). https://doi.org/10.

1016/j.biopsych.2014.11.019 PMID: 25676489

47. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al., PERIOD2::LUCIFERASE

real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral

tissues, Proc Natl Acad Sci U S A. 2004; 101(15): 5339–46. https://doi.org/10.1073/pnas.0308709101

PMID: 14963227

48. Yoshikawa T, Yamazaki S, Menaker M, Effects of preparation time on phase of cultured tissues reveal

complexity of circadian organization, J Biol Rhythms. 2005; 20(6): 500–12. https://doi.org/10.1177/

0748730405280775 PMID: 16275769

49. vanderLeest HT, Vansteensel MJ, Duindam H, Michel S, Meijer JH, Phase of the electrical activity

rhythm in the SCN in vitro not influenced by preparation time, Chronobiol Int. 2009; 26(6): 1075–89.

Epub 2009/09/05. https://doi.org/10.3109/07420520903227746 PMID: 19731107

50. Eilers PH, A perfect smoother, Anal Chem. 2003; 75(14): 3631–6. Epub 2003/10/23. https://doi.org/10.

1021/ac034173t PMID: 14570219

51. Laloux L., Cizeau P., Bouchaud J.-P., and Potters M., Noise dressing of financial correlation matrices,

Physical Review Letters, 83(7):1467–1470, (1999). https://doi.org/10.1103/PhysRevLett.83.1467

52. Blondel Vincent D., Guillaume Jean-Loup, Lambiotte Renaud, and Lefebvre Etienne, Fast unfolding of

communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, P10008

(2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

Uncovering functional signature in neural systems via random matrix theory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006934 May 1, 2019 20 / 20

https://doi.org/10.1016/j.jphysparis.2007.05.005
https://doi.org/10.1016/j.jphysparis.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17628455
https://doi.org/10.1523/JNEUROSCI.0535-10.2010
https://doi.org/10.1523/JNEUROSCI.0535-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20410121
https://doi.org/10.1113/jphysiol.2012.239590
http://www.ncbi.nlm.nih.gov/pubmed/23184516
https://doi.org/10.1016/j.neurobiolaging.2017.03.030
http://www.ncbi.nlm.nih.gov/pubmed/28454845
https://doi.org/10.1038/nrn2774
http://www.ncbi.nlm.nih.gov/pubmed/20087360
https://doi.org/10.1016/j.biopsych.2014.11.019
https://doi.org/10.1016/j.biopsych.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25676489
https://doi.org/10.1073/pnas.0308709101
http://www.ncbi.nlm.nih.gov/pubmed/14963227
https://doi.org/10.1177/0748730405280775
https://doi.org/10.1177/0748730405280775
http://www.ncbi.nlm.nih.gov/pubmed/16275769
https://doi.org/10.3109/07420520903227746
http://www.ncbi.nlm.nih.gov/pubmed/19731107
https://doi.org/10.1021/ac034173t
https://doi.org/10.1021/ac034173t
http://www.ncbi.nlm.nih.gov/pubmed/14570219
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1371/journal.pcbi.1006934

