38 research outputs found

    Proceedings of the Mediterranean Seagrass Workshop 2006

    Get PDF
    The Mediterranean Seagrass Workshop 2006 was convened in response to the need to promote a periodic event that would host scientists interested in Mediter- ranean seagrasses, and international scientists who are involved in projects that are focused on the Mediterranean marine environment, to discuss current knowl- edge and present the findings of their latest research. The concept of holding an international meeting originated during the Inter- national Seagrass Biology Workshop (ISBW6) held in 2004 in Queensland, Aus- tralia. In particular, one of the goals of ISBW6 was to identify key ecological issues and environmental trends within a number of geographical regions. This stimulated the idea of taking such topic to a higher level; the Mediterranean scale. The Mediterranean Sea is a rare and vulnerable ecoregion, one of the planetā€™s biodiversity hot spots, where many of the species present are endemic (around 20%). The Mediterranean Sea also has a millenarian history of human use of its coasts. However, the current exponential increase of human pressure on the coastal zone for living space, transportation, recreation and food production is expected to have dramatic long-term impacts on the Mediterranean marine envi- ronment. Being located in shallow coastal areas close to human settlement, sea- grasses are bearing the brunt of disturbance from such anthropogenic activities, with the result that degradation and loss of seagrass habitats is widespread in the whole Mediterranean Sea. Thus, there is great concern that the functions which seagrasses have performed in the Mediterranean marine ecosystem will be weak- ened or, in some places, lost altogether.peer-reviewe

    Nutrient Loading Fosters Seagrass Productivity under Ocean Acidification

    Get PDF
    The effects of climate change are likely to be dependent on local settings. Nonetheless, the compounded effects of global and regional stressors remain poorly understood. Here, we used CO2vents to assess how the effects of ocean acidification on the seagrass, Posidonia oceanica, and the associated epiphytic community can be modified by enhanced nutrient loading. P. oceanica at ambient and low pH sites was exposed to three nutrient levels for 16 months. The response of P. oceanica to experimental conditions was assessed by combining analyses of gene expression, plant growth, photosynthetic pigments and epiphyte loading. At low pH, nutrient addition fostered plant growth and the synthesis of photosynthetic pigments. Overexpression of nitrogen transporter genes following nutrient additions at low pH suggests enhanced nutrient uptake by the plant. In addition, enhanced nutrient levels reduced the expression of selected antioxidant genes in plants exposed to low pH and increased epiphyte cover at both ambient and low pH. Our results show that the effects of ocean acidification on P. oceanica depend upon local nutrient concentration. More generally, our findings suggest that taking into account local environmental settings will be crucial to advance our understanding of the effects of global stressors on marine systems

    Arsenic concentrations in seagrass around the Mediterranean coast and seasonal variations

    Get PDF
    Arsenicā€™s occurrence in the environment could be due to human activities as well as to natural sources. In this study, Posidonia oceanica and Cymodocea nodosa are collected in 84 sites around the Mediterranean basin. In addition, both seagrass are collected monthly, in two sites (Calvi in Corsica and SalammbĆ“ in Tunisia). Arsenic concentrations in C. nodosa present seasonal variations in relation with spring phytoplankton blooms. For both species arsenic concentration is higher in the vicinity of geological sources (mining), lagoon outlets and industrial activities. Moreover, Mediterranean islands (Balearic, Sardinia, Corsica, Malta, Crete and Cyprus) and the Southern basin coastline exhibit lower concentrations in Arsenic than the rest of the Mediterranean basin. The wide spread distribution of these two species would encourage their use in a global monitoring network devoted to Arsenic contamination.peer-reviewe

    In situ experiments on the effect of low pH on the ultrastructure of the seagrasses Cymodocea nodosa and Posidonia oceanica

    Get PDF
    The present study investigates the impacts of low pH on the cell structure of the seagrasses Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson. The study was applied with in situ experiments at the Castello Aragonese of Ischia (Naples, Italy), where shallow submarine vents, lowering the pH, can be used as natural laboratories. Shoots of the seagrasses were transferred from the control area (pH 8.1) to the two venting areas (pH 7.8 and 6.8) for different times. Epidermal cells of young leaves were examined using transmission electron microscopy (TEM) and tubulin immunofluorescence. After one week at pH 7.8, the cell structure of Posidonia oceanica was normal, while in Cymodocea nodosa microtubule (MT) network and cell structure were affected. In addition, in C. nodosa, ultrastructural analysis revealed a gradual degradation of the nuclei, a disorganization of the chloroplasts, and an increase in the number of mitochondria and dictyosomes. The exposure of both plants for 3 weeks at pH 6.8 resulted in the aggregation and finally in the dilation of the endoplasmic reticulum (ER) membranes. Tubulin immunofluorescence revealed that after three weeks, the MT cytoskeleton of both plants was severely affected. All these alterations can be considered as indications of an apoptotic like programmed cell death (AL-PCD) which may be executed in order to regulate stress response

    A look to the future acidified ocean through the eyes of the alien and invasive alga Caulerpa cylindracea (Chlorophyta, Ulvophyceae)

    No full text
    Underwater CO2 vents represent natural laboratories where the responses of marine organisms to ocean acidification can be tested. In a such context, we investigated the changes in the physiology, anatomy, and ultrastructure of the non-indigenous algal species Caulerpa cylindracea growing along a natural pH/CO2 gradient, by conducting a reciprocal transplant experiment between two populations from an acidified vs a non-acidified site. Stress effects in transplants from current to lowered pH conditions resulted in a decrease in the number of active chloroplasts together with an increased number of dilatations between thylakoid membranes and a higher amount of plastoglobules. These changes were consistent with a decrease in the chlorophyll content and in photosynthetic efficiency, matched by an increase in carotenoid content and non-photochemical yields. On the opposite side, transplants from low to current pH showed a recovery to original conditions. Unexpectedly, no significant difference was recorded between wild populations living at current and lowered pH. These results suggest an ongoing acclimation process to lowered pH in the C. cylindracea populations growing in the vent area. This confirms the high plasticity of this invasive species, able to cope not only with different light and temperature conditions but even with a new acidified scenario
    corecore