9 research outputs found

    A closed device to generate vortex flow using PZT

    Get PDF
    This paper reports for the first time a millimeter scale fully packaged device which generates a vortex flow of high velocity. The flow which is simply actuated by a PZT diaphragm circulates with a higher velocity after each actuating circle to form a vortex in a desired chamber. The design of such device is firstly conducted by a numerical analysis using OpenFOAM. Several numerical results are considered as the base of our experiment where a flow vortex is observed by a high speed camera. The present device is potential in various applications related to the inertial sensing, fluidic amplifier and micro/nano particle trapping and mixing

    Robust angular rate sensor based on corona discharge ion wind

    Get PDF
    A new design of a jet flow gyroscope is developed by employing the advantages of a corona-discharge-based jet flow. Ion wind is generated by applying a high–voltage between a pin, as the discharge electrode, and a ring, as the reference electrode. When the gyroscope is subjected to an angular rate, the induced Coriolis force deflects the ion wind. This deflection is detected using four hotwires installed downstream of the working chamber behind the reference electrode. Both the experimental and numerical study have been conducted to study the phenomenon. The results show that the angular rate can be detected with a sensitivity of above 15 μV/o/s. Because ion wind can be generated with minimum power and does not require any vibrating components, the device is robust, consumes low power, and cost-effective

    Fluidic mechanism for dual-axis gyroscope

    Get PDF
    In this paper, we report a further study of flow-network generating four jet flows which circulate in a sealed device to experimentally investigate the feasibility and efficiency of a dual-axis gyroscope. The experiment is carried out successfully and the experimental results reasonably agreed with those obtained by numerical analysis using OpenFOAM. The flow rectifying coefficient is determined using the mathematical lump model for a vibrating system, which takes into account of the device geometry and resonant frequency. Experimental and numerical results demonstrate that the coefficient of the new system developed in this study is significantly higher than those of conventional designs. The hotwire-integrated device which can function as a dual-axis gyroscope is tested using a turntable with speeds up to 1900 rpm. The scale factor and cross-sensitivity of the system are 0.26 microV s/o and 1.2%, respectively. The cross-sensitivity and the effects of linear acceleration, actuating voltage on the diaphragm, heating power and position of hotwires are also investigated

    Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    No full text
    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis

    Study on miniaturized tri-axis heat convection accelerometer with experimental validation

    No full text
    We present a study on tri-axis heat convective accelerometer, which is designed with the closed-loop type heat source and thermal sensing hotwire elements. The closed-loop heat source enhances the convective flow to the central part, where a hotwire is placed, to measure the vertical component of acceleration. The simulation was conducted using numerical analysis, and the device was prototyped by additive manufacturing. The device, functioning as a tilt sensor and an accelerometer, was tested up to acceleration of 10g. The experiments were successfully conducted and the experimental results agreed reasonably with those obtained by numerical analysis. The results demonstrated that the closed-loop heat source could reduce the cross effect between the acceleration components

    An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam

    No full text
    Background Data on breakthrough SARS-CoV-2 Delta variant infections in vaccinated individuals are limited. Methods We studied breakthrough infections among Oxford-AstraZeneca vaccinated healthcare workers in an infectious diseases hospital in Vietnam. We collected demographic and clinical data alongside serial PCR testing, measurement of SARS-CoV-2 antibodies, and viral whole-genome sequencing. Findings Between 11th–25th June 2021 (7-8 weeks after the second dose), 69 staff tested positive for SARS-CoV-2. 62 participated in the study. Most were asymptomatic or mildly symptomatic and all recovered. Twenty-two complete-genome sequences were obtained; all were Delta variant and were phylogenetically distinct from contemporary viruses obtained from the community or from hospital patients admitted prior to the outbreak. Viral loads inferred from Ct values were 251 times higher than in cases infected with the original strain in March/April 2020. Median time from diagnosis to negative PCR was 21 days (range 8–33). Neutralizing antibodies (expressed as percentage of inhibition) measured after the second vaccine dose, or at diagnosis, were lower in cases than in uninfected, fully vaccinated controls (median (IQR): 69.4 (50.7-89.1) vs. 91.3 (79.6-94.9), p=0.005 and 59.4 (32.5-73.1) vs. 91.1 (77.3-94.2), p=0.043). There was no correlation between vaccine-induced neutralizing antibody levels and peak viral loads or the development of symptoms. Interpretation Breakthrough Delta variant infections following Oxford-AstraZeneca vaccination may cause asymptomatic or mild disease, but are associated with high viral loads, prolonged PCR positivity and low levels of vaccine-induced neutralizing antibodies. Epidemiological and sequence data suggested ongoing transmission had occurred between fully vaccinated individuals
    corecore